Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

23 octubre 2016 7 23 /10 /octubre /2016 05:02

Toda educación científica que no se inicia con las matemáticas es imperfecta en su base.

A.Comte

 Matemáticos que han nacido o fallecido el día 23 de Octubre

      

Matemáticos nacidos este día:

1865 : Bohl
1950 : Schoen

Matemáticos fallecidos este día:

1944 : Barkla
1985 : Semple
2007 : Kendall
  • Hoy es el ducentésimo nonagésimo séptimo día del año.
  • 2972=88209 y 88+209=297,se dice que 297 es un número de Kaprekar (Por: Shri Dattatreya Ramachandra Kaprekar, 1905–1986, matemático Indio) es aquel entero no negativo tal que, en una base dada, los dígitos de su cuadrado en esa base pueden ser separados en dos números que sumados dan el número original.
  • 297 es un número deficiente pues es mayor que la suma de sus divisores propios.
  • 297 es odioso pues su expresión binaria contiene un número impar de unos.
  • 297 es un número afortunado, si tomamos la secuencia de todos los naturales a partir del 1: 1, 2, 3, 4, 5,… Tachemos los que aparecen en las posiciones pares. Queda: 1, 3, 5, 7, 9, 11, 13,… Como el segundo número que ha quedado es el 3 tachemos todos los que aparecen en las posiciones múltiplo de 3. Queda: 1, 3, 7, 9, 13,… Como el siguiente número que quedó es el 7 tachamos ahora todos los que aparecen en las posiciones múltiplos de 7. Así sucesivamente. Los números que sobreviven se denominan números afortunados.

Schoen

 

El matemático norteamericano Richard Melvin Schoen ha investigado en el uso de técnicas de análisis global de la geometría diferencial . En 1979, junto con su antiguo director de tesis, Shing-Tung Yau , demostró el teorema fundamental  de la energía positiva de la relatividad general . En 1983, fue galardonado con una beca MacArthur , y en 1984, obtuvo una solución completa al problema Yamabe en variedades compactas . Este trabajo combina nuevas técnicas con las ideas desarrolladas en trabajos anteriores con Yau, y los resultados parciales de Thierry Aubin y Neil Trudinger .En 2007, Simon Brendle y Richard Schoen probaron el teorema de la esfera diferenciable , un resultado fundamental en el estudio de las variedades de  curvatura seccional positiva.

 Por su trabajo en el problema Yamabe, Schoen fue galardonado con el Premio Bôcher en 1989. Se incorporó a la Academia Americana de las Artes y las Ciencias en 1988 y a la Academia Nacional de Ciencias en 1991, y ganó una beca Guggenheim en 1996. En 2012 se convirtió en miembro de la Sociedad Americana de Matemáticas

Barkla

El físico inglés Charles Glover Barkla fue galardonado con el Premio Nobel de Física en 1917.

En 1913, después de haber trabajado en las Universidades de Cambridge y Liverpool, y el King's College, Londres, Barkla fue nombrado profesor de filosofía natural en la Universidad de Edimburgo, cargo que ocupó hasta su muerte. 

Barkla logró progresos significativos en el desarrollo y perfeccionamiento de la leyes de dispersión de rayos X, espectroscopia de rayos X, los principios que rigen la transmisión de los rayos X a través de la materia y especialmente los principios de la excitación de secundaria rayos-X. Por su descubrimiento de los rayos X característicos de los elementos, Barkla fue galardonado con el Premio Nobel de Física en 1917. También fue galardonado con la Medalla Hughes de la Royal Society Británica de ese mismo año.

Semple

El matemático irlandés John Greenlees Semple obtuvo su doctorado por Cambridge con una tesis sobre transformaciones Cremona.

Nombrado catedrático de matemáticas puras de la Universidad de Queen, el departamento floreció durante su liderazgo

Era un investigador muy activo, publicando nueve artículos  importantes durante seis años. Los temas que se estudiaron fueron las representaciones de Grassmann en múltiples espacios lineales, invariantes de superficies compuestas en el espacio superior, y los estudios de las singularidades forzados en una superficie bajo la condición de que se tiene contacto con un orden establecido, con una curva dada. Además de sus investigaciones, comenzó cursos para profesores de enseñanza secundaria que les permita mantenerlos al día con los nuevos desarrollos matemáticos. 

Durante el período de 1944 hasta 1947 comenzó una colaboración con Roth y juntos escribieron el primero de los tres textos famosos, Introducción a la geometría algebraica,  publicado en 1949. 

Roth y Semple también trabajaron juntos en la creación y  funcionamiento del Seminario de Geometría de Londres que funcionó durante 40 años y fue que uno de los principales puntos focales para la investigación de geometría de todo el mundo. Semple también trabajó con Du Val que se unió al Seminario de Geometría de Londres, pero  sólo escribió un documento conjunto.

Kendall

El matemático inglés David George Kendall es una autoridad mundial en la aplicación de probabilidad y análisis de datos. Ha escrito sobre geometría estocástica y sus aplicaciones, y la teoría estadística de la forma. Su trabajo más reciente incluye dos artículos How to look at objects in a five-dimensional shape space (1994-95) and The Riemannian structure of Euclidean shape spaces: a novel environment for statistics 

Ha recibido numerosos honores y premios por su destacada labor en estas áreas de la estadística matemática entre ellos la Medalla de Plata de la Royal Statistical Society en 1955 y la Medalla de Oro de la Royal Statistical Society en 1981. También se le otorgó el Premio Weldon Memorial  y Medalla de Ciencia Biométrica de la Universidad de Oxford en 1974 y la Universidad de Princeton le otorgó su Premio Wilks  en 1980.

Kendall ha sido coeditor de una serie de obras importantes, como las matemáticas en las Ciencias Arqueológicas e Históricas (1971), Análisis Estocástico (1973), geometría estocástica (1974), analítica y geométrica Estocástico (1986).

Bohl

El matemático letón Piers Bohl trabajó en ecuaciones diferenciales, topología y funciones cuasi-periódicas.

La noción de funciones cuasi-periódicas fue generalizada por  Harald Bohr.

Fue el primero en probar el caso tridimensional del teorema del punto fijo de Brouwer, pero su trabajo no fue conocido en su momento. 

Bohl también se planteó si las partes fraccionarias de determinadas funciones dan una distribución uniforme. Su trabajo en esta área lo llevó adelante de forma independiente al realizado por Weyl y Sierpinski 

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Matemáticos del día
Comenta este artículo

Comentarios

Artículos Recientes

  • Matemáticos del día
    Conocí a un hombre una vez que me dijo que lejos de creer en la raíz cuadrada de menos uno, en lo que no creía era en menos uno. Esto es, en todo caso una actitud coherente Edward Titchmarsh Matemáticos que han nacido o fallecido el día 18 de Enero Matemáticos...
  • Teorema del día
    LEY DE RECIPROCIDAD CUADRÁTICA El primero que ofrece de manera implícita una parte de la primera ley complementaria de la L.R.C. es Diofanto de Alejandría, en su obra Arithmetica. Luego, Fermat motivado por este libro encuentra parte esencial de la primera...
  • Matemáticos del día
    Siempre que puedas, cuenta F.Galton Matemáticos que han nacido o fallecido el día 17 de Enero Matemáticos nacidos este día: 1647 : Elisabetha Koopman 1706 : Benjamin Franklin1847 : Zhukovsky1858 : Koenigs1868 : Couturat1889 : Fowler1900 : Collingwood1905...
  • Matemáticos del día
    No tengo ni idea. Pero sé que, sin matemáticas, nunca lo descubriremos I.Stewart Matemáticos que han nacido o fallecido el día 16 de Enero Matemáticos nacidos este día: 1801 : Clausen 1877 : Gronwall1885 : Plancherel1906 : Kahler1920 : Boone1925 : Dahlquist...
  • Matemáticos del día
    Di lo que sepas, haz lo que debas, pase lo que pase S.Kovalevsskaya Matemáticos que han nacido o fallecido el día 15 de Enero Matemáticos nacidos este día: 1648 : Aldrich1708 : Castillon1717 : Stewart1814 : Schläfli1850 : Kovalevskaya 1876 : Robert J...
  • Matemáticos del día
    Abel ha dejado ideas suficientes para mantener ocupados a los matemáticos los próximos cinco siglos C.Hermite Matemáticos que han nacido o fallecido el día 14 de Enero Matemáticos nacidos este día: 1819 : Cockle1887 : Steinhaus1902 : Tarski1924 : Reizins...
  • Error de cálculo en el cuadrilátero
  • Matemáticos del día
    Nada procede del azar, sino de la razón y la necesidad Leucipo Matemáticos que han nacido o fallecido el día 13 de Enero Matemáticos nacidos este día: 1845 : Tisserand1864 : Wien 1868 : McIntosh1876 : Eisenhart1876 : Schmidt1900 : Cox1902 : Menger1931...