Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

20 noviembre 2016 7 20 /11 /noviembre /2016 06:06

Las nubes no son esferas, las montañas no son conos, las líneas costeras no son circunferencias y una corteza de árbol no es lisa, como tampoco es cierto que la luz viaje en línea recta

B.Mandelbrot

 Matemáticos que han nacido o fallecido el día 20 de Noviembre

Matemáticos nacidos este día:

1889 : Hubble
1893 : Bloch
1917 : Savage
1924 : Mandelbrot
1963 : Gowers

Matemáticos fallecidos este día:

1763 : Mei Juecheng
1764 : Goldbach
1856 : Farkas Bolyai
1908 : Voronoy
1934 : Sitter
1960 : Yamabe
1986 : Beurling
1986 : Ostrowski
1861 : Sarrus

  • Hoy es el tricentésimo vigésimo quinto día del año.
  • 325 es el menor número que puede escribirse como suma de dos cuadrados de tres formas diferentes.
  • 325 es el último día del año que es suma de los primeros n2 números naturales.
  • 325 es un número deficiente pues es mayir que la suma de sus divisores propios.
  • 325 es un número odioso pues en su expresión binaria aparece un número impar de unos.
  • 325 es un número triangular, el número triangular es aquel número que puede ser recompuesto en la forma de un triángulo equilátero, siendo el primer número triangular el 1, los números triangulares fueron de estudiados por Pitágoras quien consideraba un número sagrado al 10 cuando este es escrito en forma triangular, este número es conocido como Tetraktys o trianón.

Hubble

El astrónomo norteamericano Edwin Powell Hubble fue el hombre que hizo cambiar nuestra visión de Universo. En 1929 mostró que las galaxias se alejan de nosotros con una velocidad proporcional a su distancia. La explicación es simple pero revolucionaria: El Universo se está expandiendo.

Hubble fue capaz de medir la distancia de sólo un puñado más de galaxias, pero se dio cuenta de que a grosso modo podía tomar su brillo aparente como una indicación de la distancia. La velocidad a la que una galaxia se acercaba o alejaba de nosotros era relativamente fácil de medir debido al desplazamiento Doppler de su luz. De la misma manera que la frecuencia del sonido de un coche de carreras decrece a medida que se aleja, la luz de una galaxia se hace más roja. Aunque nuestros oídos pueden oír el cambio de tono del motor del coche de carreras, nuestros ojos no pueden detectar el diminuto desplazamiento al rojo de la luz, pero con un espectrógrafo sensible Hubble fue capaz de determinar el desplazamiento al rojo de la luz de las galaxias distantes.

 A la vista de la Relatividad General, la teoría de la gravedad propuesta por Albert Einstein en 1915, se llega a la ineludible conclusión de que todas las galaxias, y todo el Universo, tuvieron origen en una gran explosión (Big Bang) hace miles de millones de años. Así nació la nueva ciencia cosmológica

Hubble realizó sus grandes descubrimientos con el mejor telescopio del mundo en aquella época, el telescopio de 100 pulgadas del Monte Wilson en el sur de California. Hoy lleva su nombre el mejor telescopio que tenemos, no en la Tierra, sino como satélite de observación en órbita alrededor de nuestro planeta. El Telescopio Espacial Hubble continúa el trabajo iniciado por el propio Hubble, cartografiando el Universo y obteniendo las más extraordinarias imágenes jamás vistas de lejanas galaxias, muchas de las cuales están disponibles a través de Internet.

Bloch

El matemático francés André Bloch fue uno de los tres hijos de un relojero judío alsaciano y su esposa. André y sus hermanos quedaron huérfanos siendo muy niños, siendo criados por sus tíos. André y su hermano Georges estaban en la misma clase a pesar de que Georges era más joven, y es que André no era especialmente brillante en los exámenes. Sin embargo, su profesor del colegio estaba convencido de la capacidad de André y usó sus influencias para que su alumno fuese examinado oralmente para el ingreso en la Escuela Politécnica; librado de las restricciones que le imponía una hoja de papel, André impresionó suficientemente a sus examinadores como para ser admitido en la Escuela, donde su brillante hermano ya se había matriculado por la vía ordinaria. Sin embargo, André y Georges sólo pudieron asistir durante un curso, el esfuerzo militar de la I Guerra Mundial demandaba nuevos reclutas.

Ambos hermanos resultaron heridos durante el combate pero su destino fue diferente. Mientras que Georges recibió una herida en la cabeza, a resultas de la cual perdió un ojo, André sufrió un politraumatismo al caer desde un puesto de observación de artillería; Georges fue licenciado con honor y volvió a la Escuela Politécnica, mientras que a André no se le concedió la licencia, por lo que tendría que volver al frente en cuanto se recuperase de sus heridas.

El 17 de noviembre de 1917, André se encontraba en París de permiso. Acudió a una comida a casa de sus tíos, su hogar durante muchos años, a la que también asistió Georges. Acuchilló a los tres en repetidas ocasiones hasta que los mató. Después salió a la calle corriendo y dando voces, hasta que fue detenido sin oponer resistencia. Habida cuenta de que en el incidente se veían implicados dos oficiales del ejército (ambos hermanos eran tenientes) y de que el país estaba aún en guerra, no se le dio mucha publicidad al caso. El tribunal sentenció a André a ser recluido en el Manicomio de Charenton durante el resto de su vida.

La razón, si realmente la hubo, por la que cometió los asesinatos no está del todo clara. Bloch se justificaría tiempo después ante sus médicos diciendo que estaba cumpliendo con un deber eugenésico. Tal y como él lo explicó, las leyes de la eugenesia eran indiscutibles y sus acciones eran una consecuencia necesaria dado “el historial familiar de enfermedades mentales”.

Aparte de esto y por lo demás, Bloch parecía estar perfectamente cuerdo y dedicaba su tiempo en el manicomio a trabajar en varias pruebas matemáticas. Tomó la iniciativa de escribir a varios matemáticos especializados en las distintos campos que él estudiaba, exponiéndoles sus resultados en matemática pura y aplicada. Aparte de Jacques Hadamard, Bloch mantuvo correspondencia regular con George Polya, Georges Valiron, Charles Emile Picard y Paul Montel. Aunque siempre daba la dirección postal del Manicomio de Charenton como remite, nunca revelaba su condición de interno. Tras la visita de Hadamard, se convirtió en un secreto a voces en la comunidad matemática francesa.

Siendo lo anterior llamativo, lo es aún más si tenemos en cuenta que André Bloch puede ser considerado completamente autodidacta. Todo lo que el sabía de matemáticas lo había sacado de los libros de matemáticas que le habían suministrado en Charenton y de las revistas especializadas a las que se suscribió (incluyendo el Bulletin des Sciences Mathématiques).

Junto con cuatro artículos sobre funciones holomorfas y meromorfas (que ahora son considerados fundamentales), André Bloch escribió y publicó artículos sobre teoría de funciones, teoría de números, geometría y ecuaciones algebraicas, por nombrar sólo algunas de las áreas de su interés. Continuó publicando incluso durante la ocupación nazi, pero usando un seudónimo para que su apellido judío no llamase la atención de los seguidores de la eugenesia alemanes.

Bloch se mostró siempre muy interesado por la vida académica francesa, incluyendo las elecciones a la Académie des Sciences, y muchas veces mostró su esperanza de que le permitiesen hacer una exposición en persona de algunos de sus resultados ante el Collège de France o la Universidad de Estrasburgo, con la que mantenía excelentes relaciones epistolares a través de Georges Valiron. Bloch, sin embargo, reconocía inmediatamente que “con toda probabilidad, no podrá ser posible durante un tiempo”.

André Bloch murió el 11 de octubre de 1948, de leucemia. Poco antes de su muerte recibió la notificación de que le había sido concedido el premio Becquerel de la Académie des Sciences. Hoy día su nombre se recuerda principalmente en el teorema de Bloch (y la constante de Bloch asociada) y el espacio de Bloch.

Savage

El matemático estadounidense Leonard Jimmie Savage fue un  especialista en estadística. Su obra más conocida es del año 1954 y se titula Foundations of Statistics (Fundamentos de estadística) en el que introduce ciertos elementos sobre la teoría de la decisión.En su obra menciona y elabora la subjetividad de la utilidad esperada estableciendo las bases de la inferencia bayesiana y sus aplicaciones a la teoría de juegos. Leonard fue como ayudante de John von Neumann, el científico que contruyó el primer computador electrónico. Muchas de las teorías de Savage se aplican en la actualidad en diversos campos de la matemática financiera. Una de las aportaciones de este autor se denomina ley Hewitt–Savage para los eventos simétricos.

Mandelbrot

El matemático nacido en Polonia Benoit Mandelbrot fue introducido en las matemáticos por su tio Szolem Mandelbrojt que era Profesor de Matemáticas en el Collège de France. Su tío era seguidor de Hardy, con su filosofía de las matemáticas puras, lo que le provocó una reacción contra las mismas. Tras la guerra, estudió en la Ecole Polytechnique, donde dos de sus profesores fueron Gaston Julia (experto en análisis complejo, que dio nombre al llamado conjunto de Julia que dio lugar al llamado ahora conjunto de Mandelbrot) y Paul Pierre Levy (un experto en teoría de probabilidades).

Desencantado con la predominancia de la matemática bourbakista, marchó a los Estados Unidos, trabajando primero en la IBM pasando ya a una edad más tardía a la Universidad de Yale, en 1987.

Cuando Mandelbrot estudiaba en la IBM las fluctuaciones del precio del algodón, observó que los precios no guardaban una distribución normal, así que consiguió finalmente todos los datos de precios desde 1900, y analizándolos con un IBM, descubrió un hecho sorprendente: Los números que causaban aberraciones desde el punto de vista de una distribución normal, producían simetrías desde el punto de vista de las escalas. Cada cambio de precio era aleatorio e impredecible, pero la sucesión de cambios era independiente de la escala: las curvas para precios diarios y mensuales encajaban perfectamente (incluso aunque en estos datos estaban los correspondientes a las dos Guerras Mundiales y a la Gran Depresión). Estaba sí descubriendo un patrón fractal en estas mediciones.

En un cierto momento, se preguntó acerca de la longitud de una costa marina. Fijémonos en que un mapa de una costa marina muestra muchas bahías. Pero hay muchas más pequeñas que no se toman en consideración. Y si caminamos a lo largo de la costa no tendremos en cuenta las bahías microscópicas entre los granos de arena. Y no importa que aumentáramos el mapa de escala una y otra vez: siempre habría más bahías visibles con cada aumento.  Este es el comportamiento de un objeto fractal.

Un fractal es así un objeto que tiene esa propiedad de autosemejanza: si aplicamos al mismo una lupa, veríamos que sigue teniendo el mismo aspecto. Este es el caso de muchos objetos en la naturaleza, como el sistema circulatorio de nuestro cuerpo, la lñinea de una costa, las nubes, etc.

Mandelbrot recibió a lo largo de su vida innumerable honores y premios. Algunos de ellos son: la medalla Barnard en 1985 por sus servicios extraordinarios a la ciencia; la medalla Franklin en 1986; el premio Alexander von Humboldt en 1987; la medalla Steinmetz en 1988; la Legión de Honor en 1989; la medalla Nevada en 1991; el premio Wolf de Física en 1993; y el Premio Japón de Ciencia y Tecnología en 2003.

Gowers

 

El matemático británico William Timothy Gowers es profesor (2005) en el Rouse Ball Professor of Mathematics del departamento de Matemáticas Puras y Estadística matemática en la Universidad de Cambridge y Fellow del Trinity College.

En 1996 recibió el premio de la Sociedad Europea de Matemáticas. Ganó en 1998  la medalla Fieldspor sus investigaciones en el análisis funcional y combinaciones.

Es hijo del compositor Patrick Gowers. 

Goldbach

      Comienzo de la carta de Goldbach a Euler

 

El matemático alemán Christian Goldbach tras sus estudios de medicina y matemáticas en Königsberg, viaja por Europa y conoce a los grandes matemáticos del momento. Entabla amistad con Euler para finalmente, instalarse en Rusia donde, además de dar clase, realiza otras tareas administrativas.

En la Academia de Ciencias de San Petesburgo se encuentra con los hermanos Bernouilli (Daniel y Nicolas II) con los que mantiene correspondencia.

Sus trabajos tratan sobre series infinitas, ecuaciones algebraicas y funciones elípticas, sus celebres conjeturas aritméticas  abren las puertas a la teoría aditiva de números desarrollada por, entre otros,  Waring, Lagrange, Hardy, Littlewood, Ramanujan y Vinogradov.

La célebre conjetura de Goldbach, propuesta por Goldbach a Euler en una carta, dice  :Todo número entero par estrictamente mayor que dos puede escribirse como suma de dos primos. Pese a expresarse tan facilmente aún no ha sido resuelta 

Farkas Bolyay

El matemático húngaro Farkas Wolfang Bolyai, amigo del gran genio Carl Friedrich Gauss, se dedicaba a la enseñanza secundaria y había pasado gran parte de su vida intentado demostrar el postulado de las paralelas de la geometría euclídea. Cuando descubrió que su propio hijo, Janos Bolyai (1802-1860), entonces brillante oficial ingeniero del ejército austro-húngaro, se encontraba también absorbido por la misma cuestión, le escribió una carta previniéndole. He aquí un fragmento:

“Por amor de Dios te lo ruego, olvídalo. Témelo como a las pasiones sensuales, porque lo mismo que ellas puede llegar a absorber todo tu tiempo y aún privarte de tu salud, de la paz de espíritu y de la felicidad en la vida.”

 Sin embargo, el hijo Janos no se dejó convencer continuando sus esfuerzos consiguiendo, hacia 1825, llegar a la conclusión de que el quinto postulado de Euclides no podía ser demostrado a partir de los otros cuatro e incluso podía negarse, permitiendo que por un punto C exterior a una recta AB se puedan trazar más de una recta en el plano ABC que no corte a la recta AB. En tal caso se llegaba a un tipo distinto de geometría (pero igualmente válida) llamada no-euclídea. Desconociéndolo entonces, el matemático ruso Nicolai Ivanovich Lobachevsky había llegado por el mismo tiempo a un resultado análogo trabajando de forma independiente.

Cuando Farkas Bolyai escribió a su viejo amigo Gauss pidiéndole una opinión sobre la heterodoxa obra de su hijo, éste respondió que en conciencia no podía elogiar el trabajo sin elogiarse a sí mismo, pues había mantenido los mismos puntos de vista desde hacía muchos años. Al conocer la respuesta y la consecuente falta de apoyo efectivo de Gauss, el joven y temperamental Janos Bolyai se sintió inquieto y molesto, temiendo que se tratase de un ardid para usurparle la prioridad del descubrimiento. 

Voronoï

 El matemático ruso Georgi Fedoseevich Voronoï es conocido por sus diagramas de Voronoï que permiten dividir una superficie en polígonos convexos determinando las zonas de influencia de un conjunto de puntos dados.  

Sitter

El matemático, físico y astrónomo holandés Willem de Sitter estudió matemáticas en la Universidad de Groninga, donde trabajó para el laboratorio astronómico. Entre 1897 y 1899 trabajó en el Observatorio de la Ciudad del Cabo en Sudáfrica. En 1908 fue nombrado profesor de Astronomía en la Universidad de Leiden, también fue director del Observatorio de esta ciudad desde 1919 hasta su fallecimiento.

De Sitter hizo sus principales contribuciones al campo de la Cosmología física. En 1932 fue coautor junto a Albert Einstein de un trabajo, en el que argumentaban que puede existir grandes cantidades de materia que no emitan luz, actualmente conocidos como agujeros negros. También destacó por el concepto de Universo De Sitter, una solución para la teoría de la relatividad general de Einstein en la que no hay materiaa y una constante cosmológica positiva. Esto resulta en una expansión exponencial, Universo vacío. De Sitter también fue famoso por su investigación del planeta Júpiter. Murió el 20 de noviembre de 1934 en Leiden.

Ostrowski

El matemático  ruso Alexander Markowich Ostrowski inició sus estudios comerciales pero tenía inclinación hacia las matemáticas teóricas. Gracias a una invitación de Hensel y Landau continuó sus estudios en Marburg. Perfeccionó sus estudios con Hilbert tras la I guerra mundial.

Sus trabajos abarcan numerosos temas como la topología, análisis convexo, series de Dirichlet, teoría analítica de números, cuerpos de los números p - ádicos (con Hensel)

En 1989 se creó el premio que lleva su nombre para recompensar cada año dos trabajos novedosos en matemáticas. Entre otros lo ha recibido Andrwe Wiles

      Sarrus

El matemático francés Pierre Frédéric Sarrus dudaba entre escoger Medicina o Matemáticas para continuar su carrera. El rechazo del alcalde de Saint-Affrique de otorgarle un certificado de buena vida y costumbres a causa de sus opiniones bonapartistas y de sus orígenes protestantes le obligan a optar por la facultad de Ciencias.

Sus trabajos tratan sobre los métodos de resolución de ecuaciones numéricas y sobre el cálculo de variaciones. En 1853 resuelve uno de los problemas más complicados de la mecánica de las piezas articuladas: la transformación de movimientos rectilíneos alternativos en movimientos circulares uniformes.

Pero su celebridad entre los estudiantes de Matemáticas se explica sobre todo por una regla de cálculo de determinantes de matrices de orden 3 que lleva su nombre: la regla de Sarrus. Fue introducida en el artículo Nouvelles méthodes pour la résolution des équations publicado en Estrasburgo en 1833.

Mei Juecheng 

E funcionario de la corte, matemático y astrónomo chino Mei Juecheng aprendió matemática de su abuelo Mei Wending. En 1713 se incorporó al Mengyangzhai (oficina imperial creada para sintetizar el conocimiento científico occidental y chino) como uno de los principales editores del Lüli yuanyuan [Fuente de las armonías matemáticas y astronomía] ( 1723). Una obra de autoría exclusivamente china, el Lüli yuanyuan readjudicó a estudiosos chinos el crédito de muchos descubrimientos que compendios chino-jesuitas más antiguos habían atribuido a europeos. El estudio del álgebra occidental le permitió a Mei descifrar tratados de matemática chinos de las dinastías Song (920–1279) y Yuan (1206–1368), cuyos métodos se habían perdido; esto lo condujo a exponer una teoría sobre el origen chino del conocimiento occidental. Aunque actualmente considerados como muy exagerados, sus puntos de vista ayudaron a reavivar el interés en la matemática tradicional china y Mei siguió siendo muy influyente por décadas.

 

Arne Carl-August Beurling

El matemático sueco Arne Carl-August Beurling trabajó extensamente en análisis armónico, análisis complejo y teoría del potencial . La " factorización de Beurling "ayudó a los matemáticos a entender la descomposición de Wold , y les ayudó para seguir trabajando en los subespacios invariantes de operadores lineales y álgebras de operadores , por ejemplo, el teorema de factorización de Håkan Hedenmalm  para espacios de Bergman .

En el verano de 1940, consiguió descifrar, solo, una primera versión de la Siemens y Halske T52 también conocido como el Geheimfernschreiber ("teletipo secreto") utilizado por la Alemania nazi en la Segunda Guerra Mundial para enviar mensajes cifrados. El T52 fue uno de los llamados " Fish cyphers ", que, mediante transposición, creaba casi un trillón (893,622,318,929,520,960) de diferentes variaciones. Necesitó dos semanas para resolver el problema con  pluma y  papel.

Beurling fue elegido miembro de la Academia Americana de las Artes y las Ciencias en 1970. Fue director de tesis de Lennart Carleson y Carl-Gustav Esseen .

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Matemáticos del día
Comenta este artículo

Comentarios

Artículos Recientes

  • Matemáticos del día
    Quien piensa poco se equivoca mucho L. da Vinci Matemáticos que han nacido o fallecido el día 20 de Julio Matemáticos nacidos este día: 1789 : Bordoni1876 : Blumenthal1879 : Bilimovic1929 : Kennedy Matemáticos fallecidos este día: 1751 : Robins1819 :...
  • Matemáticos del día
    ¿El aleteo de una mariposa en Brasil ha ocasionado un tornado en Texas? E.N.Lorenz Matemáticos que han nacido o fallecido el día 18 de Julio Matemáticos nacidos este día: 1013 : Hermann de Reichenau1635 : Hooke1689 : Samuel Molyneux1768 : Argand1813 :...
  • Matemáticos del día
    El azar es la medida de nuestra inteligencia H.Poincaré Matemáticos que han nacido o fallecido el día 17 de Julio Matemáticos nacidos este día: 1831 : Mannheim1837 : Lexis1863 : Richmond1868 : Comrie1894 : Weaver1894 : Lemaitre1909 : Geoffrey Walker1913...
  • Muere Maryam Mirzakhani, la primera mujer en ganar una medalla Fields de Matemáticas
    Todo en ella fue prematuro. Su genio, su reconocimiento, su muerte. Maryam Mirzakhani, unas de las grandes mentes de la matemática contemporánea, falleció este sábado de cáncer. Con solo 40 años, la iraní era la única mujer que había logrado la Medalla...
  • Matemáticos del día
    La Matemática es la más simple, la más perfecta y la más antigua de las ciencias J.Hadamard Matemáticos que han nacido o fallecido el día 16 de Julio Matemáticos nacidos este día: 1678 : Hermann1819 : Aronhold 1902 : Calugareanu1903 : Flügge-Lotz Matemáticos...
  • Matemáticos del día
    Todo debe hacerse en la forma más sencilla posible, pero no en la más fácil A.Einstein Matemáticos que han nacido o fallecido el día 15 de Julio Matemáticos nacidos este día: 1865 : Wirtinger1898 : Mary Taylor1906 : Yushkevich1908 : Zygalski1909 : Cochran1923...
  • Matemáticos del día
    Dios semeja un hábil geómetra Sir Thomas Browne Matemáticos que han nacido o fallecido el día 14 de Julio Matemáticos nacidos este día: 1905 : Laurence Young1937 : David Hayes1952 : Cafaro Matemáticos fallecidos este día: 1800 : Mascheroni1827 : Fresnel...
  • Matemáticos del día
    Dios semeja un hábil geómetra Sir Thomas Browne Matemáticos que han nacido o fallecido el día 13 de Julio Matemáticos nacidos este día: 1527 : Dee1741 : Hindenburg1904 : Foster Matemáticos fallecidos este día: 1807 : Johann(III) Bernoulli1941 : Privalov2016...