Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

26 diciembre 2016 1 26 /12 /diciembre /2016 06:14

Los errores causados por los datos inadecuados son mucho menores que los que se deben a la total ausencia de datos

C.Babbage

 Matemáticos que han nacido o fallecido el día 26 de Diciembre

 

Matemáticos nacidos este día:

1780 : Somerville
1791 : Babbage
1861 : Engel
1903 : Bosanquet
1907 : Carlitz
1937 : Conway

Matemáticos fallecidos este día:

1624 : Mayr
1889 : Hunyadi
1966 : Subbotin
1973 : Hotelling
1979 : Hasse
1992 : Kemeny
1997 : Arf
2006 : Martin Kruskal
2011 : Howie

  • Hoy es el tricentésimo sexagésimo primer día del año.
  • 361 es un número apocalíptico pues 2361 contiene la secuencia 666.
  • 361=192, una de las aproximaciones de pi dada por Ramanujan es (92+((192/22))/1/4.
  • 361 es un número deficiente pues es mayor que la suma de sus divisores propios.
  • 361 es un número afortunado pues si tomamos la secuencia de todos los naturales a partir del 1: 1, 2, 3, 4, 5,… Tachemos los que aparecen en las posiciones pares. Queda: 1, 3, 5, 7, 9, 11, 13,… Como el segundo número que ha quedado es el 3 tachemos todos los que aparecen en las posiciones múltiplo de 3. Queda: 1, 3, 7, 9, 13,… Como el siguiente número que quedó es el 7 tachamos ahora todos los que aparecen en las posiciones múltiplos de 7. Así sucesivamente. Los números que sobreviven se denominan números afortunados.
  • 361 es un número odioso pues en su expresión binaria aparece un número impar de unos.
  • 361 es un número poderoso pues cumple que si un primo p es un divisor suyo entonces p2 también lo es

 

Somerville

La matemática y astrónoma escocesa Mary Fairfax Greig Somerville fué una mujer que con pasión se dedicó al estudio de las matemáticas y al conocimiento de los avances científicos. Popularizó la astronomía y escribió multitud de ensayos. La Academia  Inglesa la premió concediéndole ser socia de honor, ya que las mujeres no podían ser socias oficiales

“Tengo 92 años…, mi memoria para los acontecimientos ordinarios es débil, pero no para las matemáticas o las experiencias científicas. Todavía soy capaz de leer libros de algebra. superior durante cuatro o cinco horas por la mañana, e incluso de resolver problemas”.

Su primer éxito fue ganar una medalla de plata por la solución de un problema sobre las ecuaciones diofánticas en el Mathematical Repository de W. Wallace.

Su segundo matrimonio fue con su primo William Somerville un médico con interés por todo lo científico, por lo que llega a Mary la felicidad a su vida. En Londres, Mary encuentra un interesante ambiente científico. Sus compañeros científicos  le envían libros y trabajos científicos, la invitan a conferencias y acuden a la casa de los Somerville para compartir sus experimentos.

Mary comienza a desarrollar sus ensayos sobre la Refracción de los rayos solares, Acción de los rayos solares sobre jugos vegetales, Transmisión de los rayos solares en diferentes medios. Trabaja en lo que podría considerarse un antecedente de la fotografía, observando los efectos de decoloración que se producen sobre papel bañado en cloruro de plata expuesto al sol.

Demostró interés y dedicación a la astronomía, y fue nombrada miembro honorario de la Real Sociedad de Astronomía siendo las primeras mujeres que obtuvieron tal honor.

Era una persona de alto prestigio en la comunidad científica, totalmente reconocida en diferentes países y se sentía feliz por poder  seguir estudiando.

Tras una etapa en Italia, publica Physical Geography, un manuscrito que estuvo a punto de guardar sin editar, más su marido le insistió  para que no lo hiciera. Se hicieron de él siete ediciones. Entre sus logros destacan la versión traducida de la obra de Laplace Mecánica de los Cielos que se convirtió en un texto estándar en los cursos de matemáticas superiores. En este trabajo Somerville, que fue conocida más tarde por su predicción de que se descubrirían los planetas Neptuno y Plutón, trabajó de forma incansable hasta su muerte.

Somerville, que fue completamente autodidacta, fue considerado como uno de los pocos de habla Inglés matemáticos capaces de llevar a cabo este trabajo y fue profusamente elogiada por muchos de los principales científicos, matemáticos y otros intelectuales de su época.

A los 85 años comienza a escribir su cuarto libro On Molecular and Mycroscopic Science y revisa su libro On the theory of differences. A los 89 años escribe su autobiografía y sigue estudiando matemáticas aun con 92 años. Cuando le sorprende la muerte estaba investigando sobre cuaterniones.

Quienes tuvieron la suerte de conocerla no dudaron en llamarla “la reina de las ciencias del siglo XIX”.

Babbage

El matemático inglés Charles Babbage, fue un niño enfermizo. Su padre era rico por lo que Babbage estudió en las mejores escuelas privadas. Enseguida mostró interés por las matemáticas. Antes de entrar en la universidad estudiaba en su casa con la ayuda de un tutor de Oxford, para así lograr el nivel universitario. Así en 1810 ingresó en la Universidad de Cambridge.

En 1812 crea la Sociedad Analítica junto con otros estudiantes de Cambridge y en 1816 ingresa en la Real Sociedad de Matemáticas de Londres.

Durante una de las reuniones de la Sociedad Analítica en 1812, fue cuando a Babbage se le ocurrió la idea de que era posible diseñar una máquina capaz de realizar cálculos. En un principio no se dedicó a esta idea, pero en 1819 ya empezó a diseñar y construir su primera máquina, que terminó en 1822, fue un pequeño motor en diferencias. La presentó en la Real Sociedad Astronómica de Londres, recibiendo por ella la medalla de oro de dicha sociedad. Fue entonces cuando obtuvo una subvención para diseñar y construir una máquina en diferencias más grande, Babbage esperaba terminarla en 3 años pero la construcción se alargó en el tiempo. En 1834 se paró la construcción de la máquina en diferencias.

Su trabajo con la máquina en diferencias le condujo a nuevas ideas, y así en 1834 ya tenía realizados los primeros bocetos de la máquina analítica, que nunca llegó a construirse pero su diseño sentó las bases de la computadora actual.

En 1840 Babbage dio una conferencia en Turín sobre el motor analítico, presenciando dicha conferencia estaba un matemático italiano llamado Menabrea que realizó un informe en francés sobre todo lo expuesto por Babbage. Dicho informe lo tradujo al inglés Ada Lovelace, incorporando varias ideas suyas así como diversos programas para realizar cálculos complejos con la máquina.

A pesar de que Babbage no pudo construir la máquina analítica, su proyecto supuso sentar las bases de la informática y todos los conceptos por él expuestos en su diseño se demostraron que eran correctos años más tarde

 Engel

El matemático alemán Friedrich Engel, fue profesor en las universidades de Leipzig, Greifswald y Giessen, sus trabajos versaron sobre álgebra abstracta y, en particular, sobre la teoría de grupos de transformaciones. Llevó a cabo una recopilación de la obra de Lie. Escribió Teoría de los grupos de transformaciones.

Carlitz

El matemático norteamericano Leonard Carlitz relizó su doctorado, sobre los cuerpos de Galois inspirado por los trabajos de Artin,  bajo la supervisión de Mitchell. Supervisó 44 doctorados en la Universidad de Duke y publicó más de 770 artículos.

Sus trabajos versan sobre El módulo de Carlitz, generalización del módulo de Drinfel'd, los números de Bernoulli,los polinomios de Bessel, introdujo los polinomios  Al-Salam-Carlitz 

Conway

El matemático inglés John Horton Conway es prolífico matemático activo en la teoría de conjuntos (teoría de conjuntos finitos), teoría de nudos, teoría de números, teoría de juegos y teoría de códigos. Se formó en la Universidad de Cambridge.

Entre los matemáticos aficionados, quizás es más conocido por su teoría de juegos combinatorios, en particular por ser el creador en 1970 del juego de la vida. También es uno de los inventores del juego del drago, así como del Phutball y ha realizado análisis detallados de muchos otros juegos y problemas, como el cubo Soma.

Inventó un nuevo sistema numérico, los números surreales, los cuales se encuentran estrechamente relacionados a ciertos juegos y han sido objeto de una novela matemática por Donald Knuth. También ideó una nomenclatura para números excesivamente largos, la nowiki o flecha encadenada de Conway.

Actualmente es profesor de matemáticas en la Universidad de Princeton. En 1981 fue elegido miembro de la Royal Society.

Ha escrito varios libros incluyendo On numbers and games ("Sobre números y juegos") y Winning ways for your mathematical plays ("Maneras de ganar sus juegos matemáticos").

Hotelling

El estadístico norteamericano  y profesor de Economía en la Universidad de Columbia en los años 30 Harold Hotelling, fue profesor de algunos que llegarían a ser prestigiosos economistas como Kenneth Arrowy Milton Friedman

Se doctoró en Matemáticas en Princeton en 1924 y comenzó como profesor en Stanford University hasta que se mudó a la de Columbia en 1931. 

Las contribuciones teóricas de Harold Hotelling fueron una de las claves de la resurrección de la teoría marginalista en la década de 1930. Una de sus contribuciones más famosas fue la que hizo en 1938, en una conferencia a la Sociedad Econométrica, en la que demostraba que la eficiencia económica es alcanzada si todos y cada uno de los bienes son producidos vendidos al precio que iguala al coste marginal. Esta afirmación es una de las bases de los teoremas Fundamentales de la Economía del Bienestar y de la teoría paretiana del equilibrio general.

Hasse

 El matemático alemán Helmut Hasse trabajó en teoría de números,  formas cuadráticas, números p - ádicos (junto a Hensel), teoría de cuerpos de clases así como sobre álgebras no conmutativas y números hipercomplejos en colaboración con Emmy Noether.

Su nombre aparece asociado al teorema de Hasse - Minkowski, también llamado principio local - global y al algoritmo de Hasse o algoritmo de Siracusa formulado por Collatz

 Kemeny

El matemático americano John Georges Kemeny desarrolló, en 1963, el lenguaje de programación BASIC (Beginer's All purpose Symbolic  Instruction Code) junto a Thomas Eugene Kurtz en el colegio de Darmoutz, para permitir a los estudiantes, que no trabajaban en asignaturas de ciencias, usar los ordenadores.

El lenguaje Basic ha dado lugar a numerosos dialectos (GW Basic, QBasic, TurboBasic, VisualBasic, SmallBasic, Freebasic, TIBasic). Los macros de las suites de ofimática suelen estar escritos en dialectos del Basic, por ejemplo OooBasic para OpenOffice

Arf

El matemático turco Cahit Arf se interesó  por las matemáticas gracias al  estimulo que, durante sus años escolares en Izmir, recibió de su maestro que le animó a resolver los problemas de la geometría euclidiana. En 1926 el padre Arf compró francos franceses, cuando se devaluó la moneda y se convirtió en una opción más económica para la familia para enviar Arf a la escuela en Francia. 

Tras pasar por la enseñanza secundaria como profesor, entro en la universidad de Estambul:

En el Liceo, me preguntaba a mí mismo que  problemas geométricos  podría resolverse con una regla y cuáles no. Más tarde, me enteré de la teoría de Galois  y luego entendí. ... En ese momento, yo estaba pensando en hacer una lista de las ecuaciones algebraicas o ecuaciones algebraicas de Galois que pueden ser resueltos. Ese era mi problema. ...Jordan encuentra todos los grupos que podrían ser resueltos. Él escribió un grueso libro sobre eso. Traté de leer ese libro ... No podía leer los libros. ... De todos modos, considera este problema como un proyecto. Fue sólo un proyecto. Yo no había hecho nada al respecto todavía. Mientras yo estaba ocupado con todas estas ideas, el paso del tiempo. ... Pensó que no podía hacer frente a este proyecto en Estambul, así que obtuvo el permiso de la universidad y se fue a Göttingen.

En 1937 se trasladó a la Universidad de Göttingen a hacer su doctorado bajo la supervisión de HelmutHasse . Completó sus estudios de doctorado en 1938, obteniendo, entre otros resultados, el teorema ahora conocido como el  teorema Hasse-Arf. Había estudiado en Göttingen durante el período muy difícil que condujo a la Segunda Guerra Mundial, pero Hasse le pidió que permaneciera  allí  un año más para continuar con su trabajo y durante este período de trabajo Arf produjo lo que hoy se llaman los invariantes de Arf

Arf recibido muchos premios por sus destacadas contribuciones a las matemáticas incluyendo el premio Inonu. Entre los honores que recibió se encuentra ser  doctor honoris causa por la Universidad Técnica del Mar Negro, la Middle East Technical University y Universidad Técnica de Estambul.

 Para cada problema tenía su propia idea de enfoque. La característica de su enfoque es la minuciosidad, que siempre busca invariantes, y prefiere las construcciones explícitas en vez de la combinación de las teorías existentes. Una vez que se determina su enfoque, aborda el problema con energía y nunca se rinde hasta que consigue su objetivo. Si uno estudia las obras de Cahit Arf,están llenas de cálculos originales y minuciosos, seguramente uno se preguntará donde encuentra el profesor Arf sus inspiraciones.

Gran parte del trabajo más importante Arf estaba en la teoría de números algebraicos, él inventó los  invariantes de Arf, que tienen muchas aplicaciones en la topología . Sus primeros trabajos fue en las formas cuadráticas en los cuerpos, sobre todo los cuerpos de característica 2. Su nombre no sólo se adjunta a invariantes de Arf, sino que  también es recordado por el  teorema Hasse-Arf, que juega un papel importante en la teoría de la clase de cuerpos y teoría de Artin  de L -funciones. En  teoría de anillos, los anillos de Arf llevan su nombre.

El Simposio Internacional sobre Álgebra y Teoría de Números se celebró en honor de Arf en Silivri del  3 al 7 de  septiembre de 1990. 

Kruskal

 

El matemático y físico norteamericano Martin David Kruskal estudió bajo la tutela de Richard Courant, en 1952. 

Trabajó en comportamiento asintótico, solitones y números surreales; junto con George Szekeres, introdujo las coordenadas de Kruskal-Szekeres para la métrica de Schwarzschild, que es la solución vacía esféricamente simétrica para la ecuación del campo de Einstein; y además inventó el procedimiento de conteo de Kruskal, de enorme ayuda para las cadenas de Márkov.

Fue miembro de la Academia Nacional de Ciencias desde 1980 y en 1993 ganó la Medalla Nacional de Ciencias. En 2006 ganó el Premio Leroy P. Steele por su contribución en la investigación.

Bosanquet

El matemático ingles Lancelot Stephen Bosanquet escribió muchos artículos sobre la convergencia y sumabilidad de las series de Fourier . También escribió sobre la convergencia y sumabilidad de  las series de Dirichlet. Sus trabajos sobre integrales incluyen dos importantes documentos sobre la integral de Laplace - Stieltjes  publicados en 1953 y 1961. 

Fue profesor visitante en la Universidad de Utah durante 1964-1965, donde dio una importante serie de conferencias sobre la historia y el desarrollo de la teoría de las series divergentes y las integrales. Durante 1969-1970 visitó la Universidad de Western Ontario y dio otra importante serie de conferencias, esta vez en la matriz transformaciones y espacios de secuencia con las aplicaciones para sumabilidad. 

Durante 30 años, Bosanquet supervisó 19 estudiantes para su doctorado.Tenía una reputación de ser un excelente supervisor que siempre estaba dispuesto a ofrecer ayuda y asesoramiento a sus estudiantes.

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Matemáticos del día
Comenta este artículo

Comentarios

Artículos Recientes

  • Matemáticos del día
    La reputación de un matemático reside en el número de pruebas erróneas que ha hecho Besicovitch Matemáticos que han nacido o fallecido el día 23 de Julio Matemáticos nacidos este día: 1775 : Malus1854 : Sleszynski1863 : Kelly Miller1888 : Carlson1914...
  • Matemáticos del día
    El cálculo es la ayuda más grande que tenemos para la aplicación de la verdad física, en el sentido más extenso de la palabra W.F.Osgood Matemáticos que han nacido o fallecido el día 22 de Julio Matemáticos nacidos este día: 1755 : de Prony1784 : Bessel1795...
  • Teorema del día
    Problema de Basilea Jacob Bernoulli (1654-1705), junto con su hermano Johann (1667-1748), se dedicaron al estudio de las series armónicas, especialmente entre los años 1689 y 1704. Fueron ellos lo que demostraron su divergencia. Animados por estos resultados...
  • Matemáticos del día
    La matemática es la vida de los dioses Novalis Matemáticos que han nacido o fallecido el día 21 de Julio Matemáticos nacidos este día: 1620 : Jean Picard 1848 : Weyr1849 : Woodward1861 : Slaught1895 : Erich Hans Rothe1926 : Leech Matemáticos fallecidos...
  • Matemáticos del día
    Quien piensa poco se equivoca mucho L. da Vinci Matemáticos que han nacido o fallecido el día 20 de Julio Matemáticos nacidos este día: 1789 : Bordoni1876 : Blumenthal1879 : Bilimovic1929 : Kennedy Matemáticos fallecidos este día: 1751 : Robins1819 :...
  • Matemáticos del día
    ¿El aleteo de una mariposa en Brasil ha ocasionado un tornado en Texas? E.N.Lorenz Matemáticos que han nacido o fallecido el día 18 de Julio Matemáticos nacidos este día: 1013 : Hermann de Reichenau1635 : Hooke1689 : Samuel Molyneux1768 : Argand1813 :...
  • Matemáticos del día
    El azar es la medida de nuestra inteligencia H.Poincaré Matemáticos que han nacido o fallecido el día 17 de Julio Matemáticos nacidos este día: 1831 : Mannheim1837 : Lexis1863 : Richmond1868 : Comrie1894 : Weaver1894 : Lemaitre1909 : Geoffrey Walker1913...
  • Muere Maryam Mirzakhani, la primera mujer en ganar una medalla Fields de Matemáticas
    Todo en ella fue prematuro. Su genio, su reconocimiento, su muerte. Maryam Mirzakhani, unas de las grandes mentes de la matemática contemporánea, falleció este sábado de cáncer. Con solo 40 años, la iraní era la única mujer que había logrado la Medalla...