Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

9 diciembre 2016 5 09 /12 /diciembre /2016 06:21

La lógica es la higiene que practican los matemáticos para mantener sus ideas sanas y robustas.

H.Weyl

 Matemáticos que han nacido o fallecido el día 9 de Diciembre

Matemáticos nacidos este día:

1667 : Whiston
1839 : Roch
1883 : Luzin
1883 : Nekrasov
1902 : Schwerdtfeger
1905 : Sperner
1906 : Hopper
1907 : Deuring
1916 : Good
1917 : Fomin

Matemáticos fallecidos este día:

1880 : Byrne
1938 : Pierpont
1955 : Weyl
1958 : Jackson
2012 : Fedorchuk

  • Hoy es el tricentésimo cuadragésimo cuarto día del año.
  • La suma de los cuadrados y la suma de los cubos de los factores primos de 344 son números primos 22+22+22+432=1861, 23+23+23+433=79351.
  • 344 es un número deficiente pues es mayor que la suma de sus divisores propios.
  • 344 es un número odioso pues en su expresión binaria aparece un número impar de unos

Whiston

 El matemático inglés William Whiston  fue además  teólogo e historiador . 

Después de su ordenación, en 1693, regresó a la Universidad de Cambridge para estudiar matemáticas y ser profesor adjunto de Newton. Se hicieron buenos amigos. Cuando Newton renunció al puesto de profesor lucasiano de matemáticas, unos tres años más tarde, hizo que se nombrara a Whiston en su lugar. Durante su carrera, Whiston pronunció conferencias sobre astronomía y matemáticas, pero la influencia de Newton también lo alentó a interesarse más a fondo en la cronología y la doctrina bíblicas.

Al iniciar esta etapa de su vida, da un giro copernicano a sus creencias y se convirte en una figura de controversia religiosa, cuando disintió de la Iglesia de Inglaterra.

En julio de 1708, Whiston escribió a los arzobispos de Canterbury y de York para que reformaran la doctrina de la Iglesia de Inglaterra en lo que tenía que ver con la enseñanza de la Trinidad, reflejada en el Credo Atanasiano. Como cabía esperar, se le aconsejó prudencia, pese a lo cual Whiston persistió.

Llegó a ser profesor adjunto de Sir Isaac Newton, siendo considerado como un brillante matemático en Cambridge hasta el punto de suceder  a Newton como Profesor Lucasiano.

Whiston trabó una fuerte amistad con Newton, hasta el punto de que las inquietudes religiosas de Newton en cuestiones como la enseñanza no bíblica del dogma de la Trinidad y otras tuvieron una influencia crucial en el aspecto religioso de William Whiston.

Mientras Newton era reservado y temía por su posición, Whiston se mostraba muy franco. De hecho, en 1708 escribió varias cartas a los arzobispos de York y Canterbury, para que la Iglesia de Inglaterra reformara la enseñanza del Dogma de la Trinidad. Incluso se atrevió a escribir un folleto donde exponía sus ideas antitrinitarias.

En 1710 se le acusó de enseñar doctrinas contrarias a las creencias de la Iglesia de Inglaterra y se le sometió a un largo proceso judicial, que duró cinco años.

Sufrió mofa y desprecio y se le estigmatizó como hereje, pero también se ganó el respeto de muchos. William Whiston rechazó las enseñanzas de la Iglesia de Inglaterra en 1714. Murió el 22 de agosto de 1752, a la edad de ochenta y cinco años.

Weyl

El matemático alemán Hermann Klaus Hugo Weyl estudió en Göttingen donde obtuvo su doctorado sobre singularidades (condiciones en el limite) de ecuaciones integrales, supervisado por Hilbert.

Con la llegada de los nazis abandonó Alemania y se instaló en USA

Matemático universal, contemporáneo de Einstein, se interesó por la física matemática (relatividad, elasticidad, mecánica cuántica)

Su investigación ha sido muy relevante para la física teórica así como disciplinas puras, incluyendo la teoría de números. Fue uno de los matemáticos más influyentes del siglo XX, y un miembro clave del Instituto de Estudios Avanzados en sus orígenes, contribuyendo para una visión internacional e integrada.

Weyl publicó algunos trabajos técnicos y generales sobre el espacio, el tiempo, la materia, filosofía, lógica, simetría e historia de las matemáticas. Fue uno de los primeros en concebir la probabilidad de combinar la relatividad general con las leyes del electromagnetismo. Mientras ningún otro matemático de su generación aspiró al 'universalismo' de Poincaré o Hilbert, Weyl se acercó como ningún otro. Michael Atiyah, en particular, comentó alguna vez que siempre que investigaba en algún area, descubría que Weyl le había precedido.

La semejanza de nombres hace que a veces lo confundan con André Weil. Una broma matemática supone que, como estos dos personajes fueron realmente grandes, éste era un caso raro en el este tipo error nunca pudo haber causado alguna ofensa en alguno de ellos.  

Roch

El matemático alemán Gustav Roch hizo importantes contribuciones a la teoría de las superficies de Riemann en una carrera que se redujo prematuramente a la edad de 26 años.

Se centró inicialmente en la química sin embargo, el matemático Oscar Schlömilch identificó su talento excepcional y lo guió hacia una carrera matemática. La combinación de estudios en el Instituto Politécnico con estudios privados en otro instituto Roch le sirvieron para poder publicar investigaciones originales sobre la teoría matemática de electromagnetismo a partir de 1859.

Más tarde, en 1859, entró en la Universidad de Leipzig , por influencia de Moebius , y continuó con su trabajo sobre el electromagnetismo. En 1861, entró a trabajar en la Universidad de Göttingen , en el estudio de Weber , lo cual le permitió asistir a las conferencias de Bernhard Riemann .Después Göttingen, Roch fue a la Universidad de Berlín , donde conoció a KroneckerWeierstrass y otros. En 1862 fue galardonado con una maestría de Leipzig y posteriormente un doctorado por su trabajo sobre el electromagnetismo.

Desde este momento de su trabajo tomó un sesgo más matemático.El año siguiente publicó el documento que contiene el resultado por el que es famoso hoy en día, el teorema de Riemann-Roch (dado su nombre por Max Noether ), que se refiere al género topológico de una superficie de Riemann a las propiedades puramente algebraicas,.

Sólo dos años más tarde, la salud Roch se hizo añicos debido a una infección por tuberculosis . Se trasladó a Venecia con la esperanza de que un clima más cálido podría ayudar a su recuperación, pero allí murió un mes después. 

Luzin

El matemático ruso Nikolaï Nikolaievitch Luzin, es, junto con Egorov, uno de los primeros miembros representativos de la escuela matemática de Moscu de los años 1920. Contribuyó a la formación de numerosos matemáticos como Pavel Alexandrov, Andrei Kolmogorov, Alexandre Khintchine.

Sus trabajos versan sobre teoría de la medida, teoría de conjuntos, ecuaciones diferenciales y su aplicación a la geometría, aunque es conocido por el teorema de Luzin sobre funciones medibles. 

Grace Hopper

La informática estadounidense Grace Brewster Murray Hopper concibió el primer compilador en 1951 y el lenguaje Cobol en 1957

Vassar College le ofreció un puesto como asistente en su departamento de matemáticas, en donde permaneció hasta 1943 mientras continuaba sus estudios en Yale, obteniendo el doctorado en matemáticas en 1934.

En 1943 decidió unirse a las fuerzas armadas en plena Segunda Guerra Mundial, para lo cual tuvo que obtener un permiso especial. Asistió a la Escuela de cadetes navales para Mujeres, graduándose la primera de su clase en 1944 y obteniendo el rango de teniente. Fue enviada a Harvard para trabajar en el Proyecto de Computación que dirigía el comandante Howard Aiken, la construcción de la Mark I.

Tras el final de la Segunda Guerra Mundial Hooper quiso seguir en la Armada pero como ya había cumplido los 40 años en 1946 (el límite eran 38) fue rechazada permaneciendo en la reserva. Por lo que siguió en Harvard como Investigadora junto a Aiken. Desarrolló varias aplicaciones contables para la Mark I, que estaba siendo utilizada por una compañía de seguros.

Permaneció en Harvard hasta 1949, cuando Hopper empezó a trabajar en la Eckert - Mauchly Corporation en Filadelfia (compañía fundada por los inventores del ENIAC, Eckert y Mauchly), que en esos momentos estaban desarrollando las computadoras BINAC y UNIVAC I. Trabajó en esa compañía y en sus sucesoras hasta su retiro en 1971. Allí fue donde Hopper realizó sus mayores contribuciones a la programación moderna. En 1952, desarrolló el primer compilador de la historia, llamado A-0, y en 1957 realizó el primer compilador para procesamiento de datos que usaba comandos en inglés, el B-0 (FLOW-MATIC), cuya aplicación principal era el cálculo de nóminas. Tras su experiencia con FLOW-MATIC, Hopper pensó que podía crearse un lenguaje de programación que usara comandos en inglés y que sirviera para aplicaciones de negocios. La semilla de COBOL había sido sembrada, y 2 años después se creó el comité que diseño el famoso lenguaje. Aunque Hopper no tuvo un papel preponderante en el desarrollo del lenguaje, fue miembro del comité original para crearlo, y el FLOW-MATIC fue una influencia tan importante en el diseño de COBOL, que se considera a Hopper como su creadora.

Hopper permaneció en la reserva de la Armada hasta 1966, cuando tuvo que retirarse con el grado de Comandante, por haber alcanzado el límite de edad nuevamente. Pero este retiro duró poco ya que la Armada la volvió a llamar en 1967 para que estandarizara los lenguajes de alto nivel que usaban. Se reincorporó y permaneció en el servicio durante 19 años más.

En 1986, Hopper se retiró de la Armada de manera definitiva, siendo en ese momento la oficial de más edad de la Armada de los EE.UU. Tras su retiro, se incorporó como asesora en Digital Equipment Corporation, participando en foros industriales, dando unas 200 conferencias por año y participando en programas educativos hasta 1990, cuando la "increíble Grace", que era como la conocían sus amistades, se retiró definitivamente.

A lo largo de su vida, Hopper recibió numerosos reconocimientos, que incluyen más de 40 doctorados honoris causa, la Medalla Nacional de Tecnología, la Medalla Wilbur Lucius Cross de Yale, el rango de Comodore en 1983 y el de contra-almirante en 1985.

A lo largo de gran parte de su carrera, Hopper era muy demandada como oradora en eventos relacionados con la informática. Era conocida por su animado e irreverente estilo de oratoria, así como por sus historias de guerra. 

- A menudo, se le atribuye erróneamente la invención del término bug para referirse a un error o fallo en un programa. Trabajando con un Mark II en la universidad de Harvard el 9 de septiembre de 1947, los ingenieros encontraron una mariposilla enganchada a uno de los relés del ordenador y que impedía el funcionamiento del mismo. Dicho lepidóptero pasó a la historia de la informática por ser pegado al libro de registro de actividad del ordenador con el comentario «First actual case of bug being found», en español «Primer caso real de bug encontrado» (el termino bug no se traduce al castellano por considerarse una palabra técnica). Como ella misma reconoció, no fue ella la que encontró el insecto.

Deuring  

El matemático alemán Max F Deuring  trabajó fundamentalmente en álgebra y teoría de números. Su tesis, Teoría aritmética de las funciones algebraicas, fue dirigida por Emmy Noether. Como indica el título, se pretendía construir una teoría algebraica paralela a la teoría de cuerpos de clase de los cuerpos de números, que englobase a los cuerpos de funciones sobre los racionales y sobre los cuerpos finitos

En Algebrem se encuentra un resumen de las peripecias del desarrollo  en teoría  de álgebras, cuyos principales actores fueron Noether y Hasse

Trabajó también en teoría analítica de números, por ejemplo sobre el problema de números de clases para los cuerpos cuadráticos imaginarios de Gauss

Trabajó en la construcción de la teoría algebraica del cuerpo de las funciones elípticas e hiperelípticas, con el fin de probar la hipótesis de Riemann para el segundo (el caso elíptico ya habían sido tratados por Hasse en 1930). Pero André Weil , que trabajaba en lo mismo, se le adelantó. Con su teoría del campo algebraico de las funciones elípticas , Deuring también podría introducir la teoría de la multiplicación compleja (presentada en el informe en la nueva edición de la Enciclopedia mathematischen der Wissenschaften ). Una vez más Weil fue más allá, con Shimura y Taniyama , estudiando una generalización  de variedades abelianas . En la década de 1950, Deuring trabajado entre otros en las funciones zeta de cuerpo funciones elípticas con multiplicación compleja (con Weil y otros).

Después de la guerra, Deuring fue profesor en Marburgo en 1947 y Hamburgo en 1948. En 1950, sucedió a Gustav Herglotz en Göttingen, donde permaneció hasta su jubilación en 1976, a excepción de las estancias en el Instituto de Estudios Avanzados de Princeton y el Instituto Tata  de Bombay . Tuvo más de cuarenta estudiantes de doctorado, incluidos Rudolf Ahlswede, Karl Peter Grotemeyer, Max Koecher y Hans-Egon Richert.

Deuring fue miembro de la Academia de Ciencias de Göttingen , la Academia de Ciencias y Literatura de Mainz y la Leopoldina en Halle . En 1958, fue ponente invitado  en el Congreso Internacional de Matemáticos en Edimburgo

Sperner

El matemático alemán Emanuel Sperner es conocido por sus aportaciones a las matemáticas a través del lema de Sperner y el teorema de Sperner.

Sperner asistió a la Carolinum Gymnasium en Neisse, donde recibió una excelente educación. Además de darle una excelente formación en matemáticas se graduó de la escuela en 1925, después de haber aprendido seis idiomas. En particular, él siempre habló de su deuda con su maestro alemán G Janocha que le enseñó a pensar de una manera lógica y clara

En Hamburgo tuvo a Wilhelm Blaschke como director de tesis, pero también fue asesorado por Otto Schreier . En su tesis,Neuer Beweis für die der Invarianz Dimensionszahl und des GebietesSperner,se encuentra el importante resultado que hoy se conoce como el lema de Sperner. Sperner publicó un artículo con el mismo título que su tesis, que presentó en el Seminario Matemático Hamburgo en junio de 1928 y se publicó ese mismo año. En el papel, escribe: 

La sugerencia para hacer frente a estas preguntas me fue dada por Otto Schreier en Hamburgo, y me gustaría expresar mi más sincero agradecimiento a él en este punto.

Como ejemplo vamos a realizar un experimento (visto en Gausianos):

Dibujemos un triángulo y numeremos sus vértices con los números 1, 2 y 3. Ahora subdividamos este triángulo en triángulos más pequeños. Con esto nos habrán aparecido nuevos vértices de triángulos que también vamos a numerar. Los vértices que hayan aparecido entre el vértice 1 y el 2 del grande los numeraremos con unos o doses a nuestro gusto, los que hayan aparecido entre el 2 y el 3 los numeraremos con doses o treses a nuestra elección, y lo mismo con el otro lado. Los vértices de los triángulos que hayan quedado dentro del grande los numeraremos como queramos, es decir, les asignaremos 1, 2 ó 3 según nos apetezca.

Al menos uno de los triángulos pequeños que han aparecido al subdividir cumple que sus vértices están numerados igual que el grande, es decir, uno de sus vértices tiene un 1, otro un 2 y el otro un 3 (de hecho parece ser que el número de triángulos pequeños que tienen esa numeración es siempre impar).

La razón por la que esto ocurre está en el lema de Sperner, resultado equivalente al famosísimo teorema del punto fijo de Brouwer.

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Matemáticos del día
Comenta este artículo

Comentarios

Artículos Recientes

  • Matemáticos del día
    No entiendo lo que dice, pero solicito poder no estar de acuerdo contigo A.De Morgan Matemáticos que han nacido o fallecido el día 27 de Junio Matemáticos nacidos este día: 1767 : Bouvard1806 : De Morgan1826 : Crofton1834 : Erastus De Forest1850 : Gram1853...
  • Matemáticos del día
    La matemática es la única buena metafísica Lord Kelvin Matemáticos que han nacido o fallecido el día 26 de Junio Matemáticos nacidos este día: 1824 : Thomson1878 : Löwenheim1896 : Vernon Morton1902 : Petersson1908 : Schmid1911 : Ernst Witt1914 : Spitzer1915...
  • Matemáticos del día
    La Astronomía fue la cuna de las ciencias naturales y el punto de partida de las teorías geométricas C.Lanzcos Matemáticos que han nacido o fallecido el día 25 de Junio Matemáticos nacidos este día: 1734 : Rocha1866 : Sampson1888 : Threlfall1906 : Verblunsky1908...
  • Matemáticos del día
    Nosotros, que estamos luchando continuamente en las fronteras del infinito y del futuro G. Apollinaire Matemáticos que han nacido o fallecido el día 24 de Junio Matemáticos nacidos este día: 1880 : Veblen1888 : Darmois1900 : Cauer1909 : Penney1915 : Hoyle1917...
  • El número 142857
    Cuando nos referimos a productos curiosos, procuramos destacar las singularidades que presentan ciertos números con la disposición original de sus dígitos. El número 142857 es, en este género, uno de los más interesantes de la matemática y puede ser incluido...
  • Matemáticos del día
    Sólo podemos ver poco del futuro, pero lo suficiente para darnos cuenta de que hay mucho que hacer A. Turing Matemáticos que han nacido o fallecido el día 23 de Junio Matemáticos nacidos este día: 1612 : Tacquet1746 : Trail1824 : Dase1841 : Woolsey Johnson1858...
  • Matemáticos el día
    La fuente primordial de todas las matemáticas son los números enteros Minkowski Matemáticos que han nacido o fallecido el día 22 de Junio Matemáticos nacidos este día: 1837 : Bachmann1852 : Eduard Weyr1857 : Adolf Kiefer1860 : Pieri1864 : Minkowski1866...
  • Matemáticos del día
    El estudio de las matemáticas es como el Nilo que comienza en modestia y termina en magnificencia C.Colton Matemáticos que han nacido o fallecido el día 21 de Junio Matemáticos nacidos este día: 1781 : Poisson1802 : Brasseur1828 : Bruno1868 : James Macdonald1894...