Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

23 marzo 2017 4 23 /03 /marzo /2017 06:12

La matemática universal... es la lógica de la imaginación

Leibniz

 Matemáticos que han nacido o fallecido el día 23 de Marzo

Matemáticos nacidos este día:

1749 : Laplace
1754 : Vega
1795 : Holmboe
1862 : Study
1882 : Emmy Noether
1897 : Synge
1907 : Whitney

Matemáticos fallecidos este día:

1924 : William Jack
1961 : Mason
1963 : Skolem
1979 : Lah
2007 : Cohen
2011 : Bartik

  • Hoy es el octogésimo segundo día del año.
  • 82 es suma de 10 (8+2) primos y de 16 (8x2) primos. Es el menor número con esa propiedad.
  • 82 es un número feliz pues si sumamos los cuadrados de sus dígitos y seguimos el proceso con los resultados obtenidos el resultado es 1.
  • 82 es suma de términos de Fibonacci. 82=1+5+21+55.
  • 82 es suma de enteros consecutivos 82=19+20+21+22.
  • 82 es suma de cuadrados 82=12+92.
  • 82 es un número deficiente pues es mayor que la suma de sus divisores propios.
  • 82 es odioso pues en su expresión binaria aparece un número impar de unos.
  • 82 es un número libre de cuadrados pues en su descomposición factorial no se repite ningún factor.
  • 82 es un número de Ulam, es un miembro de una secuencia entera, la cual fue concebida por el matemático polaco Stanislaw Ulam y publicada en SIAM Review en 1964. La secuencia estándar de Ulam comienza con U1=1 y U2=2, siendo los primeros dos números de Ulam. Entonces, para n > 2, Un queda definido como el entero más pequeño que es la suma de dos miembros anteriores diferentes entre sí en exactamente una forma.

Paul Cohen

El matemático americano Paul Joseph Cohen es conocido por haber demostrado en 1963 que la hipótesis del continuo era independiente de los axiomas de la teoría de conjuntos de Zermelo - Fraenkel, trabajo por el cual obtuvo la medalla Field en 1966.

Cohen realizó contribuciones fundamentales a la lógica matemática, al análisis y a las ecuaciones en derivadas parciales, recibiendo una medalla Fields en el año 1966. Realizó su tesis doctoral en 1958 en la Universidad de Chicago bajo la supervisión de Antoni Zygmund; es célebre por haber propuesto la técnica denominada forcing, actualmente una de las herramientas básicas de la teoría de conjuntos, que aplicó para probar que el axioma de elección y la hipótesis generalizada del continuo no pueden ser deducidos de la axiomática de Zermelo-Fraenkel (ZF). Kurt Gödel había establecido en 1938 que la hipótesis del continuo es consistente con el sistema ZF, y en 1963 Cohen vino a demostrar que también lo es su negación. Este descubrimiento, que resuelve el primero de los 23 famosos problemas planteados por Hilbert en el Segundo Congreso Internacional de Matemáticos celebrado en 1900 en París (alguno de los cuales permanece aún abierto), afecta de lleno a la fundamentación de las matemáticas y le valió a Cohen una medalla Fields tres años después. Sus investigaciones le hicieron merecedor de otros numerosos reconocimientos, entre ellos la National Medal of Science, el Bôcher Memorial Prize -que recibió por su artículo On a conjecture of Littlewood and idempotent measures (American Journal of Mathematics, 1960)-, la pertenencia a la National Academy of Sciences y el nombramiento como socio de honor de la London Mathematical Society.

Emmy Noether

La matemática alemana Emmy Noether estableció un resultado básico en física matemática:, el teorema de Noether, que relaciona simetría con conservación.

Hija del matemático Max Noether, Gracias a las influencias de su padre consiguió, a pesar de ser mujer, asistir a los cursos de Matemáticas que se impartían en la Universidad de Erlangen. A principios del siglo XX a las mujeres les estaba legalmente “permitido” estudiar en universidades alemanas. Sin embargo y con muy pocas excepciones, lo habitual era que un profesor no diera comienzo a sus clases si en el aula detectaba la presencia de alguna mujer.

En 1903 aprobó un curso en Nüremberg y al año siguiente tuvo el privilegio de poder asistir a los seminarios que impartían matemáticos de la talla de Klein, Hilbert o Minkowski. En 1907, y bajo el apadrinamiento de P. Gordan, se doctoró con una tesis titulada “Sobre la construcción del sistema de formas de la forma bicuadrática ternaria”. Para llevar a cabo este trabajo, que fue publicado en los Mathematische Annalen, tuvo que llevar a cabo un insidioso listado de sistemas de 331 formas covariantes. Años más tarde, la propia Noether calificaría esta tesis doctoral de “mamarrachada”, dejando así muy claro cuál iba a ser la tendencia que marcaría su carrera profesional, al alcanzar cada vez mayores de niveles de abstracción en las estructuras algebraicas.

En aquella época, a las mujeres no les estaba permitido dar clase en ninguna universidad alemana, por lo que el único trabajo al que pudo acceder fue el de sustituir a su padre en algunas de sus actividades docentes, cuando éste se ausentaba por problemas de salud. Sin embargo, el resultado de sus investigaciones se publicó en numerosas revistas especializadas y su nombre empezó a circular de boca en boca por entre los círculos matemáticos más importantes de Europa, conscientes de que Noether estaba iniciando una profunda reforma en el Álgebra moderna, de la que daban testimonio publicaciones como “Teoría de ideales en anillos” o su famosa memoria sobre “Sistemas hipercomplejos en sus relaciones con el Álgebra Conmutativa”.

Participó en la creación del álgebra moderna, en concreto en las estructuras de anillos e ideales. En su honor son nombrados  los anillos noetherinos.

Es junto con Artin y Van der Waerden una de las grandes figuras de la escuela matemática alemana del siglo XX

Introdujo las estructuras algebraicas en la naciente Topología dando origen a la Topología Algebraica desarrollada posteriormente por Hopf

Pierre-Simon Laplace

El matemático, astrónomo, físico y politico francés Pierre Simeon Laplace fue uno de los principales científicos de la época napoleónica. 

Recomendado por DÁlambert para profesor en Ecole Militaire, sucedió. con 19 años, a Bezout como examinador.

Al mismo tiempo que su labor docente realiza una importante labor investigadora que es reconocida desde la decada de los 70 cuando presenta sus primeros trabajos sobre el Sistema Solar. En 1785 es nombrado miembro de pleno derecho de la Academia de las Ciencias de París.

En 1789 se inicia la Revolución Francesa, en esta época es nombrado miembro de la Comisión de Pesos y Medidas que establecerá el sistema métrico y en 1792 participa en la organización de la Escuela Politécnica.

En tiempos del Consulado, Napoleón lo designa ministro del Interior. Es miembro del Senado desde 1799 y llega a ser su vicepresidente en 1803. Una vez constituido el Imperio Napoleón lo nombra Conde en 1806.

En 1815 se produce la restauración de la Monarquía. Un año más tarde es elegido miembro de la Academia Francesa de la Lengua. Y en 1817 Luis XVIII le otorga el título de Marqués.

En sus últimos años se retira a su propiedad de Arcueil donde ayuda a fundar la Sociedad de Arcueil para apoyar a los jovenes científicos: Claude Berthollet, Louis Joseph Gay-Lussac, ... de donde saldrán tres volúmenes de memorias con importantes trabajos de física y matemáticas.

Demostró la estabilidad mecánica del sistema solar lo que le valió, a los 24 años, un puesto de académico. Examinador de Napoleón en la Ecole, fue uno de los fundadores, junto a Monge, de la Politécnica. La Restauración le dió el título de marqués y par de Francia .

Laplace destacó en todas las ramas activas de la ciencia de la época: electromagnetismo (Ley de Laplace), óptica, estudio de los gases, presión atmosférica, teoría de las mareas, cosmogonia (formación del universo) en su Exposición del sistema del mundo expone una teoría próxima a la actual.

En su obra maestra, Mecánica celeste, establece una síntesis magistral del sistema solar basado en la gravitación universal de Newton.

No debemos olvidar sus trabajos en probabilidades y su obra Teoría analítica de las probabilidades. 

Mason

El matemático norteamericano Charles Max Mason se inició en la carrera de ingeniería pero los cursos de Charles Sumner Slichter le llevaron a las matemáticas.

Mason estudió para su doctorado en la Universidad de Göttingen, trabajando  bajo supervisión de Hilbert. El primer problema que Hilbert le propuso como tema de tesis fue resuelto rápidamente y escribió una elegante solución en dos páginas. Hilbert estaba impresionado, pero dijo que esto no era suficiente para presentar su tesis doctoral. Luego le dio a Mason un segundo problema que dio lugar a una tesis importante e impresionante. Recibió su doctorado en 1903 por su tesis titulada Randwertaufgaben bei gewöhnlichen Differentialgleichungen con la máxima distinción.

Sus intereses matemáticos de investigación residen en las ecuaciones diferenciales, el cálculo de variaciones y la teoría electromagnética.Desarrolló la relación entre el álgebra de matrices y ecuaciones integrales , así como el estudio de problemas de valores en la frontera . Otros temas de la amplia gama de temas de matemáticas aplicadas que estudió eran teoremas de existencia y expansiones asintóticas. Ha publicado siete artículos en los Anales de la Sociedad Americana de Matemáticas entre 1904 y 1910: el teorema de Green y funciones de Green para ciertos sistemas de ecuaciones diferenciales (1904), Las soluciones doblemente periódica de la ecuación de Poisson en dos variables independientes (1905), un problema de el cálculo de variaciones en las que el integrando es discontinua (1906), Sobre los problemas de valores en la frontera de ecuaciones diferenciales ordinarias lineales de segundo orden (1906), La expansión de una función en términos de las funciones normales (1907), Las propiedades de las curvas en espacio que minimicen una integral definida (1908) y Campos de extremos en el espacio (1910). También ha publicado las curvas de momento de inercia mínimo con respecto a un punto en el Annals of Mathematics en 1906, e inventó compensadores acústica.

Escribió varios libros, en particular The New Haven, Coloquio de Matemática (1910) y fue co-autor del campo electromagnético con Warren Weaver , que se publicó por primera vez en 1929 y reimpreso en 1952.

Un firme partidario de la Sociedad Americana de Matemáticas , fue editor asociado de la Transacciones de la Sociedad Americana de Matemáticas.Fue elegido miembro de la Academia Nacional de Ciencias (Estados Unidos), la Sociedad Matemática Alemana , y el Círculo Matemático de Palermo .

Study

El matemático alemán Eduard Study fue un lider en el estudio de la geometría de los números complejos.

Reformuló, independientemente de Severi , los principios fundamentales de la geometría enumerativa, debido a Schubert.También trabajó en la teoría de invariantes para ayudar a desarrollar una notación simbólica. En 1923 publicó un importante trabajo sobre álgebras reales y complejos de  dimensión  baja. 

Otras áreas de estudio qfueron las líneas rectas en el espacio elíptico, con su estudiante en Bonn JLCoolidge , simplificando el método de los operadores diferenciales. En 1903 publicó Géométrie der Dynamen que se considera la cinemática euclidiana y la mecánica de cuerpos rígidos.

Vega

El Baron Jurij Bartolomej Vega fue un matemático esloveno, físico y oficial de artillería.Vega  publicó una serie de libros sobre tablas de logaritmos. El primero fue en 1783. Algo más tarde en 1797 añadió un segundo volumen que contenía una colección de integrales y otras fórmulas útiles. Su manual, fue publicado íntegramente en 1793, su éxito fue tan grande que fue publicado en diversos idiomas. Su obra más importante fue Zakladnica vseh logaritmov (Thesaurus Logarithmorum Completus o Tesoro de todos los logaritmos) que se publicó en 1794 en Leipzig.

      Holmboe

El Matemático noruego Bernt Michael Holmboe, fue profesor de la Universidad de Cristianía y miembro de la Academia de Ciencias de Estocolmo.

Fue ayudante del astrónomo Hansteen y profasor de Abel, al que pagó parte de su formación universitaria por los problemas económicos que tenía. Sus obras más notables son: Tablas de la declinación del sol, Tratado de matemáticas, Estereometría, Trigonometría plana y esférica, y Tratado de matemáticas sublimes.

En 1839, diez años después de la muerte de Abel, editó la primera edición de la obra completa de Abel.

El premio Holmboeprisen fue creado por la Academia Noruega de Ciencias y Letras en memoria de Holmboe, para la promoción de la buena enseñanza de las matemáticas en primaria y secundaria

Bartik 

La matemática estadounidense Betty Jean Jennings Bartik  fue una de las programadoras originales de la computadora ENIAC.

Cuando comenzó el trabajo sobre la máquina ENIAC para cálculo de trayectorias balísticas, fue seleccionada como una de sus primeras programadoras. Luego Bartik fue elegida para formar parte del equipo de trabajo que tomó la tarea de convertir la ENIAC en una computadora con programas almacenados.En su primera implementación, la ENIAC se programaba mediante la combinación de conexiones y cables. Luego de trabajar con ENIAC, continuó trabajando con BINAC y UNIVAC I. 

Además de su título en matemáticas, Jean tenía un título en Inglés de la Universidad de Pensilvania y un Doctorado en Ciencias de la Northwest Missouri State University. En 1997, junto a sus cinco compañeras programadoras de la ENIAC, fue incluida en el Women in Technology International Hall of Fame. En 2008 fue una de las honradas con el premio del Computer History Museum, junto con Robert Metcalfe y Linus Torvalds.

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Matemáticos del día
Comenta este artículo

Comentarios

Artículos Recientes

  • Matemáticos del día
    La prueba final de una teoría es que sea capaz de resolver los problemas que la originaron T.Dantzig Matemáticos que han nacido o fallecido el día 19 de Septiembre Matemáticos nacidos este día: 1749 : Delambre1790 : Terrot1840 : McClintock1888 : Alexander1889...
  • Matemáticos del día
    Mejor que de nuestro juicio, debemos fiarnos del cálculo algebraico L.Euler Matemáticos que han nacido o fallecido el día 18 de Septiembre Matemáticos nacidos este día: 1752 : Legendre1819 : Foucault1863 : Metzler Matemáticos fallecidos este día: 1783...
  • Matemáticos del día
    Hemos utilizado el término subgrupo subinvariante pues el término subgrupo subnormal puede ser innecesariamente molesto Marshall Hall Jr. Matemáticos que han nacido o fallecido el día 17 de Septiembre Matemáticos nacidos este día: 1743 : Condorcet1826...
  • Matemáticos del día
    A partir de la evidencia intrínseca de su creación,El Gran Arquitecto del Universo comienza ahora a revelársenos como un matemático puro J.Jeans Matemáticos que han nacido o fallecido el día 16 de Septiembre Matemáticos nacidos este día: 1494 : Maurolico1736...
  • Matemáticos del día
    Dios se complace en el número impar F.Petrarca Matemáticos que han nacido o fallecido el día 15 de Septiembre Matemáticos nacidos este día: 973 : al-Biruni1886 : Paul Lévy1894 : Oskar Klein1901 : Fantappie1923 : Kreisel1926 : Serre Matemáticos fallecidos...
  • Matemáticos del día
    Si me llegara a explicar qué es lo uno, sería capaz de dar razón de las cosas existentes Zenón de Elea Matemáticos que han nacido o fallecido el día 14 de Septiembre Matemáticos nacidos este día: 1837 : Bugaev1845 : Charles Niven1858 : Henry Fine1887...
  • Matemáticos del día
    Un error es tan peligroso cuanto mayor es la cantidad de verdad que contiene H.F.Amiel Matemáticos que han nacido o fallecido el día 13 de Septiembre Matemáticos nacidos este día: 1873 : Carathéodory1885 : Blaschke1913 : Goldstine1918 : Segal1921 : Garnir1923...
  • Matemáticos del día
    Esa materia a veces clara... y a veces vaga... que son las matemáticas I.Lakatos Matemáticos que han nacido o fallecido el día 12 de Septiembre Matemáticos nacidos este día: 1771 : Reynaud1877 : Hamel1894 : Wrinch1898 : Bessel-Hagen1900 : Curry1921 :...