Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

20 marzo 2017 1 20 /03 /marzo /2017 06:04

Los hombres sabios discuten los problemas, los necios los deciden

Anacarsis

 Matemáticos que han nacido o fallecido el día 20 de Marzo

Matemáticos nacidos este día:

1840 : Mertens
1884 : Frank
1895 : Kaczmarz
1938 : Sergi Novikov

Matemáticos fallecidos este día:

1895 : Schläfli
1903 : Carl Bjerknes
1977 : Shoda
1983 : Vinogradov

  • Hoy es el septuagésimo noveno día del año.
  • 78*79=61*62, el producto de dos números consecutivos produce dos números consecutivos anexados.
  • 79=27-72.
  • 79=11+31+37,la suma de sus reversos, 97=11+13+73 todos primos.
  • 1079 es conocido como el número del Universo, se considera como el número de átomos del Universo observable.
  • 79 es el menor primo cuya suma de sus cifras es una potencia cuarta.
  • 79 es un número deficiente pues es mayor que la suma de sus divisores propios.
  • 79 es un número feliz pues cumple que si sumamos los cuadrados de sus dígitos y seguimos el proceso con los resultados obtenidos el resultado es 1.
  • 79 es un número afortunado, Tomemos la secuencia de todos los naturales a partir del 1: 1, 2, 3, 4, 5,… Tachemos los que aparecen en las posiciones pares. Queda: 1, 3, 5, 7, 9, 11, 13,… Como el segundo número que ha quedado es el 3 tachemos todos los que aparecen en las posiciones múltiplo de 3. Queda: 1, 3, 7, 9, 13,… Como el siguiente número que quedó es el 7 tachamos ahora todos los que aparecen en las posiciones múltiplos de 7. Así sucesivamente. Los números que sobreviven se denominan números afortunados.
  • 79 es un número odioso pues en su expresión binaria aparece un número impar de unos.
  • 79 es un número libre de cuadrados pues en su ddescomposición factorial no se repite ningún factor.

Mertens

   

Franz Carl Joseph Mertens fue un matemático nacido en Polonia que contribuyó al desarrollo de distintas áreas matemáticas. Formuló la conjetura de Mertens que, si hubiera sido cierta, habría implicado la hipótesis de Riemann. Mertens completó sus estudios universitarios en la Universidad de Berlín, donde asistió a conferencias de Weierstrass, Kronecker y Kummer . Esta fue la "época de oro" de las matemáticas en Berlín y dio a Mertens las mejores posibles fundamentos matemáticos. En 1865 se doctoró con una tesis sobre la teoría del potencial De functione potentiali duarum ellipsoidium homogenearum. Sus asesores fueron Kummer y Kronecker . Mertens trabajó en diferentes temas, incluyendo la teoría del potencial, aplicaciones geométricas a determinantes, álgebra y teoría analítica de números , Estableció una demostración elemental del teorma de Dirichlet que aparece en la mayoría de los libros de texto modernos. Hizo muchas contribuciones profundas como los teoremas de Mertens, tres resultados de la teoría de números relacionados con la densidad de los números primos. Demostró estos resultados utilizando el teorema de Chebyshev. Las conjeturas de Merten aparece en su documento Über Funktion zahlentheoretische eine (1897) publicado en Akademie Wissenschaftlicher Wien Matemáticas-Naturlich Kleine Sitzungsber. La conjetura estuvo en pie durante casi 100 años antes de que se demostró falsa en 1985 por AM Odlyzko y HJJ te Riele.

Novikov

El matemático ruso Sergei Petrovich Novikov es conocido por sus trabajos en topología algebraica y la teoría de los solitones.

En 1966 fue designado miembro de la Academia de las Ciencias de la URSS. En 1984 fue elegido miembro de la Academia serbia de Ciencias y Artes. Desde 2004 es jefe del Departamento de Geometría y Topología del Instituto de Matemáticas Steklov.

A lo largo de su carrera matemática ha recibido numerosos premios. En 1967 recibió el Premio Lenin, en 1970 la Medalla Fields, en 1981 la Medalla Lobachevsky y en 2005 el Premio Wolf.

Ludwig Schläfli

El matemático suizo Ludwig Schläfli fue especialista en geometría y análisis complejo. Jugó un papel clave en el desarrollo de la noción de espacio de cualquier dimensión.

El símbolo de Schläfli, notación de la forma (p,q,r,...) que permite definir los poliedros regulares y las teselaciones en el espacio, han sido nombradas en su honor.

Vinogradov

    

 El matemático ruso, nacido en Milolyub, Ivan Matveïevitch Vinogradov , especialista en teoría de números, fue el primero en introducir el análisis funcional (curvas algebraicas, desarollos en series de potencias).

Fue uno de los fundadores del Instituto Steklov de matemáticas de la academia de ciencias de la URSS, ganador del premio Stalin y de la medalla de oro Lomonosov de la academia de ciencias rusa. Estudió en la Universidad de San Petersburgo, donde se graduó ( 1914). Enseñó en las universidades de Perm (1918), Leningrado (1921) y Moscú (1934). Director del Instituto de Matemáticas de la Academia de Ciencias de la URSS (desde 1932). Trabajó en el tratamiento de las ecuaciones diofánticas. Para el problema de Waring (todo entero positivo se puede expresar como suma de no más de r potencias k - ésimas positivas, donde r es una cierta función de k ), Vinogradov dio r ≤ 3k(ln k+ 11) , para k grande. Se ocupó también de la conjetura de Goldbach, según la cual todo número par mayor que 3 puede expresarse como suma de dos números primos (todo número impar suficientemente grande es representable como suma de tres primos), logrando importantes resultados aunque sin llegar a resolverla. Vinogradov desempeñó un importante papel en el desarrollo de la teoría de anillos numéricos. Escribió Métodos de sumas trigonométricas en la teoría de números (1954), Introducción a la teoría de números (1955).

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Matemáticos del día
Comenta este artículo

Comentarios

Artículos Recientes

  • Matemáticos del día
    Tendremos que descubrir los mejores métodos... de formalizar lo informalizable R. Thom Matemáticos que han nacido o fallecido el día 24 de Septiembre Matemáticos nacidos este día: 1501 : Cardan1625 : de Witt1801 : Ostrogradski1844 : Max Noether 1861 :...
  • Matemáticos del día
    La prueba final de una teoría es que sea capaz de resolver los problemas que la originaron T.Dantzig Matemáticos que han nacido o fallecido el día 23 de Septiembre Matemáticos nacidos este día: 1768 : Wallace1819 : Fizeau1851 : Hayes1852 : Grobli1900...
  • EL LADRÓN DE NARANJAS
    EL LADRÓN DE NARANJAS Un ladrón un cesto de naranjas del mercado robó y por entre los huertos escapó; al saltar una valla, la mitad más media perdió; perseguido por un perro, la mitad menos media abandonó; tropezó en una cuerda, la mitad más media desparramó;...
  • Matemáticos del día
    Un centro de excelencia es, por definición, un lugar donde la gente de segunda clase puede realizar un trabajo de primera clase M.Faraday Matemáticos que han nacido o fallecido el día 22 de Septiembre Matemáticos nacidos este día: 1765 : Ruffini1769 :...
  • Matemáticos del día
    Ten en cuenta también que es posible hacer ciertas concesiones a la amenidad, cuando se escribe de cuestiones matemáticas, como es frecuente en los libros de historia G. Cardano Matemáticos que han nacido o fallecido el día 21 de Septiembre Matemáticos...
  • Matemáticos del día
    Un matemático es alguien que puede tomar una taza de café y convertirla en una teoría P.Erdös Matemáticos que han nacido o fallecido el día 20 de Septiembre Matemáticos nacidos este día: 1674 : Manfredi1842 : Brill1861 : Cole1874 : Mihály Bauer1887 :...
  • Matemáticos del día
    La prueba final de una teoría es que sea capaz de resolver los problemas que la originaron T.Dantzig Matemáticos que han nacido o fallecido el día 19 de Septiembre Matemáticos nacidos este día: 1749 : Delambre1790 : Terrot1840 : McClintock1888 : Alexander1889...
  • Matemáticos del día
    Mejor que de nuestro juicio, debemos fiarnos del cálculo algebraico L.Euler Matemáticos que han nacido o fallecido el día 18 de Septiembre Matemáticos nacidos este día: 1752 : Legendre1819 : Foucault1863 : Metzler Matemáticos fallecidos este día: 1783...