Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

23 abril 2017 7 23 /04 /abril /2017 05:04

La formulación de un problema, es más importante que su solución..

A.Einstein.

 Matemáticos que han nacido o fallecido el día 23 de Abril

      

 


Matemáticos nacidos este día:

1628 : Hudde
1858 : Planck
1907 : Vekua
1908 : Mikhlin
1910 : Macintyre
1911 : Behrend
1914 : Polozii
1923 : Dezin

Matemáticos fallecidos este día:

1927 : Ahren

  • Hoy es el centésimo décimo tercer día del año.
  • 113 es un número primo.
  • El número que se obtiene con cualquier reordenación de sus cifras es primo.
  • La suma de las 113 primeras cifras de e es un número primo.
  • 113 es el menor número cuyo producto y suma de sus cifras es primo.
  • 113 pi es casi exactamente 355, ningún dia del año está tan cerca 113 pi=354.9999699
  • 113 es un número deficiente pues es mayor que la suma de sus divisores propios
  • 113 es un número libre de cuadrados pues en su descomposición factorial no se repite ningún factor

Hudde

Johann Hudde fue un matemático holandés que trabajó con máximos y mínimos y con la teoría de las ecuaciones.

El padre de Johann Hudde era Hudde Gerrit ,un comerciante adinerado que actuó como un miembro de Ámsterdam en el Consejo de Administración de la Compañía Holandesa de las Indias Orientales desde 1632.

Desde 1648, Johann asistió a la Universidad de Leiden, donde estudió derecho. Sin embargo, en Leiden, se introdujo a las matemáticas avanzadas, donde recibió clases privadas de su maestro Van Schooten

Desde 1654 hasta 1663, Hudde trabajó las matemáticas como parte del grupo de investigación geométrica de Van Schooten.

Desempeñó durante 30 años el cargo de alcalde de Ámsterdam, siendo el primer mandato entorno a 1670. Políticamente, fue considerado moderado.

Todo el trabajo matemático de Hudde tuvo lugar antes de que empezaran sus labores políticas en 1663. Hudde trabaja con máximos y mínimos y con la teoría de ecuaciones. Encontró un método ingenioso para encontrar múltiples raíces de una ecuación que es esencialmente el método moderno de búsqueda del mayor factor común de un polinomio y sus derivados.

Un ejemplo de la regla Hudde apareció primero en Exercitatione mathematicae (escrito por Van Schooten en 1657).

En 1658 escribió una carta titulada Epistola secunda, de maximis et minimis (segunda carta en relación con máximos y mínimos) que envió a Van Schooten y éste la publicó como un apéndice en su edición de La Géométrie (Descartes) en 1659. 

Planck

 

El físico alemán  Max Karl Ernst Ludwig Planck recibió el Premio Nobel de Física en 1918 por su logro. Él describió en su discurso del Nobel dado el 2 de Junio de 1920 cómo hizo sus descubrimientos. 

"Durante muchos años, [mi meta] fue resolver el problema de la distribución de energía en el espectro normal del calor irradiado. Después de que Gustav Kirchhoff hubiese demostrado que el estado de la radiación de calor que tiene lugar en una cavidad delimitada por cualquier material emisor y absorbente a una temperatura uniforme es totalmente independiente de la naturaleza del material, se demostró una función universal que era dependiente sólo de la temperatura y la longitud de onda, pero de ningún modo de las propiedades del material. El descubrimiento de esta destacable función prometía una visión más profunda de la conexión entre la energía y la temperatura que es, de hecho, el problema principal en la termodinámica y por tanto en toda la física molecular. ...

En esa época mantuve lo que hoy serían consideradas ingenuamente inocentes y asumibles esperanzas, de que las leyes de la electrodinámica clásica nos permitirían, si se abordaran de una forma suficientemente general evitando hipótesis especiales, comprender la parte más significativa del proceso que esperaríamos, y por tanto lograr la meta deseada. ...

[Varios métodos diferentes] mostraron más y más claramente que un importante elemento de conexión o término, esencial para llegar a la base del problema, tenía que estar perdido. ...

Estuve ocupado... desde el día en que yo [establecí una nueva fórmula para la radiación], con la tarea de encontrar una interpretación física real de la fórmula, y este problema me llevó automáticamente a considerar la conexión entre la entropía y la probabilidad, es decir, el tren de ideas de Boltzmann; posteriormente tras varias semanas del más duro trabajo de mi vida, la luz penetró la oscuridad, y una nueva perspectiva inconcebible se abrió ante mi. ...

Debido a que [una constante en la ley de la radiación] representa el producto de la energía y el tiempo ... la describí como el cuanto elemental de acción. ... Mientras que fuera mirado como infinitamente pequeño ... todo estaba correcto; pero en el caso general, sin embargo, un hueco se abría en un lugar o en otro, que se convertía en más importante cuanto más débiles y rápidas se considerasen las vibraciones. Todos esos esfuerzos en salvar las distancias se derrumbaron pronto dejando poco lugar a dudas. O bien el cuanto de acción era una cantidad funcional, con lo que toda la deducción de la ley de la radiación era esencialmente una ilusión que representaba sólo un papel vacío sobre fórmulas sin significado, o bien la derivación de la ley de la radiación debía jugar un papel fundamental en la física, y aquí había algo completamente nuevo, nunca oído con anterioridad, que parecía requerir que revisáramos básicamente todo nuestro pensamiento físico, construido como lo estaba, a partir del tiempo del establecimiento del cálculo infinitesimal porLeibniz y Newton, sobre la aceptación de la continuidad de todas las conexiones causativas. La experimentación decidió que era la segunda alternativa".

Al principio la teoría encontró resistencia pero, debido al exitoso trabajo de Niels Bohr calculando las posiciones de las líneas espectrales usando la teoría, fue generalmente aceptada. El mismo Planck explica cómo, a pesar de haber inventado la teoría cuántica1, él mismo no la comprendía al principio:

"Intenté inmediatamente soldar alguna forma el cuanto elemental de acción en el marco de la teoría clásica. Pero contra todos esos intentos esta constante se mostró testaruda ... Mis fútiles intentos por integrar el cuanto elemental de acción en la teoría clásica continuaron durante varios años y me costaron muchos esfuerzos".

Planck, que tenía 42 años cuando hizo este histórico anuncio del cuanto, tomó poca parte en el posterior desarrollo de la teoría cuántica. Fue dejado a Einstein con las teorías de los cuantos de luz, a Poincaré que probó matemáticamente que los cuantos eran una consecuencia necesaria de la ley de la radiación de Planck, Niels Bohr con su teoría del átomo, Paul Dirac y otros

Macintyre

Sheila Scott Macintyre fue una matemática escocesa conocida por su trabajo en la constante Whittaker. También es creadora de un diccionario científico multilingue: inglés - alemán - ruso. En el momento de su muerte trabajaba en el japonés

Sheila Macintyre fue un miembro activo de la Sociedad Matemática de Edimburgo y de la Asociación Matemática. En 1958 fue elegida miembro de la Royal Society de Edimburgo . 

En 1958 Macintyre y su esposo aceptaron visitar cátedras de investigación en la Universidad de Cincinnati. Allí enseñó hasta su muerte prematura por cáncer.

Mikhlin

El matemático ruso Solomon Grigoryevich Mikhlin trabajó en los campos de la elasticidad lineal, integrales singulares y análisis numérico. Es más conocido para la introducción del concepto de " símbolo de un operador integral singular ", que finalmente llevó a la fundación y desarrollo de la teoría de operadores seudodiferenciales . 

Mikhlin no experimentó dificultades en la misma escala que los matemáticos soviéticos judíos más jóvenes hicieron desde mediados de 1960. Podía viajar a los países del bloque de Europa del Este e incluso fue miembro de la delegación soviética en el 1958 el Congreso Internacional de Matemáticos en Edimburgo, Escocia. Fue profesor titular de la Universidad, miembro permanente del Consejo Científico en MatMekh, y el jefe de un laboratorio. Sin embargo, se sintió fuertemente la atmósfera general antisemita. "Ellos tienen el poder, pero tenemos teoremas. En ellos está nuestra fuerza"

Sus principales contribuciones pertenecen a la teoría de la elasticidad y problemas de contorno elípticos, integrales singulares y multiplicadores de Fourier , así como las matemáticas numéricas.

En la teoría de la elasticidad matemática, Mikhlin se refiere a tres temas: el problema plano (sobre todo desde 1932 hasta 1935), la teoría de los depósitos (de 1954) y el espectro Cosserat  (1967-1973) 

Tal vez sus contribuciones más importantes son sus trabajos sobre la teoría de operadores integrales singulares y ecuaciones integrales singulares: es uno de los fundadores de la teoría multidimensional, junto con Francesco Tricomi y Georges Giraud

 

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Matemáticos del día
Comenta este artículo

Comentarios

Artículos Recientes

  • Teorema del día
    Problema de Basilea Jacob Bernoulli (1654-1705), junto con su hermano Johann (1667-1748), se dedicaron al estudio de las series armónicas, especialmente entre los años 1689 y 1704. Fueron ellos lo que demostraron su divergencia. Animados por estos resultados...
  • Matemáticos del día
    La matemática es la vida de los dioses Novalis Matemáticos que han nacido o fallecido el día 21 de Julio Matemáticos nacidos este día: 1620 : Jean Picard 1848 : Weyr1849 : Woodward1861 : Slaught1895 : Erich Hans Rothe1926 : Leech Matemáticos fallecidos...
  • Matemáticos del día
    Quien piensa poco se equivoca mucho L. da Vinci Matemáticos que han nacido o fallecido el día 20 de Julio Matemáticos nacidos este día: 1789 : Bordoni1876 : Blumenthal1879 : Bilimovic1929 : Kennedy Matemáticos fallecidos este día: 1751 : Robins1819 :...
  • Matemáticos del día
    ¿El aleteo de una mariposa en Brasil ha ocasionado un tornado en Texas? E.N.Lorenz Matemáticos que han nacido o fallecido el día 18 de Julio Matemáticos nacidos este día: 1013 : Hermann de Reichenau1635 : Hooke1689 : Samuel Molyneux1768 : Argand1813 :...
  • Matemáticos del día
    El azar es la medida de nuestra inteligencia H.Poincaré Matemáticos que han nacido o fallecido el día 17 de Julio Matemáticos nacidos este día: 1831 : Mannheim1837 : Lexis1863 : Richmond1868 : Comrie1894 : Weaver1894 : Lemaitre1909 : Geoffrey Walker1913...
  • Muere Maryam Mirzakhani, la primera mujer en ganar una medalla Fields de Matemáticas
    Todo en ella fue prematuro. Su genio, su reconocimiento, su muerte. Maryam Mirzakhani, unas de las grandes mentes de la matemática contemporánea, falleció este sábado de cáncer. Con solo 40 años, la iraní era la única mujer que había logrado la Medalla...
  • Matemáticos del día
    La Matemática es la más simple, la más perfecta y la más antigua de las ciencias J.Hadamard Matemáticos que han nacido o fallecido el día 16 de Julio Matemáticos nacidos este día: 1678 : Hermann1819 : Aronhold 1902 : Calugareanu1903 : Flügge-Lotz Matemáticos...
  • Matemáticos del día
    Todo debe hacerse en la forma más sencilla posible, pero no en la más fácil A.Einstein Matemáticos que han nacido o fallecido el día 15 de Julio Matemáticos nacidos este día: 1865 : Wirtinger1898 : Mary Taylor1906 : Yushkevich1908 : Zygalski1909 : Cochran1923...