Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

14 abril 2017 5 14 /04 /abril /2017 05:05

Las matemáticas son la música de la razón. .

Silvester.

 Matemáticos que han nacido o fallecido el día 14 de Abril

Matemáticos nacidos este día:

1629 : Huygens
1917 : Mendelsohn

 

Matemáticos fallecidos este día:

1833 : Whish
1935 : Emmy Noether
1957 : Walter Brown
1964 : Ehrenfest-Afanassjewa
1983 : Bishop
2005 : MacLane
2015 : Preston

  • Hoy es el centésimo cuarto día del año.
  • 104 es un número abundante pues la suma de sus divisores positivos, excepto el mismo, es mayor que él.
  • 104 es un número odioso pues su expresión en binario posee un número impar de dígitos
  • 104 es suma de ocho pares consecutivos 104=6+8+10+12+14+16+18+20
  • 104 es un número práctico pues todos los naturales menores que él pueden escribirse como suma de distintos divisores de 104

 Emmy Noether

La matemática alemana Emmy Noether estableció un resultado básico en física matemática:, el teorema de Noether, que relaciona simetría con conservación.

Hija del matemático Max Noether, Gracias a las influencias de su padre consiguió, a pesar de ser mujer, asistir a los cursos de Matemáticas que se impartían en la Universidad de Erlangen. A principios del siglo XX a las mujeres les estaba legalmente “permitido” estudiar en universidades alemanas. Sin embargo y con muy pocas excepciones, lo habitual era que un profesor no diera comienzo a sus clases si en el aula detectaba la presencia de alguna mujer.

En 1903 aprobó un curso en Nüremberg y al año siguiente tuvo el privilegio de poder asistir a los seminarios que impartían matemáticos de la talla de Klein, Hilbert o Minkowski. En 1907, y bajo el apadrinamiento de P. Gordan, se doctoró con una tesis titulada “Sobre la construcción del sistema de formas de la forma bicuadrática ternaria”. Para llevar a cabo este trabajo, que fue publicado en los Mathematische Annalen, tuvo que llevar a cabo un insidioso listado de sistemas de 331 formas covariantes. Años más tarde, la propia Noether calificaría esta tesis doctoral de “mamarrachada”, dejando así muy claro cuál iba a ser la tendencia que marcaría su carrera profesional, al alcanzar cada vez mayores de niveles de abstracción en las estructuras algebraicas.

En aquella época, a las mujeres no les estaba permitido dar clase en ninguna universidad alemana, por lo que el único trabajo al que pudo acceder fue el de sustituir a su padre en algunas de sus actividades docentes, cuando éste se ausentaba por problemas de salud. Sin embargo, el resultado de sus investigaciones se publicó en numerosas revistas especializadas y su nombre empezó a circular de boca en boca por entre los círculos matemáticos más importantes de Europa, conscientes de que Noether estaba iniciando una profunda reforma en el Álgebra moderna, de la que daban testimonio publicaciones como “Teoría de ideales en anillos” o su famosa memoria sobre “Sistemas hipercomplejos en sus relaciones con el Álgebra Conmutativa”.

Participó en la creación del álgebra moderna, en concreto en las estructuras de anillos e ideales. En su honor son nombrados  los anillos noetherinos.

Es junto con Artin y Van der Waerden una de las grandes figuras de la escuela matemática alemana del siglo XX

Introdujo las estructuras algebraicas en la naciente Topología dando origen a la Topología Algebraica desarrollada posteriormente por Hopf 

Christian Huygens

El matemático,astrónomo y físico holandes Christian Huygens estudió derecho y matemáticas en Leiden. presentado a Mersenne y a Descartes por su padre, diplomático y científico aficionado, se concentró en las matemáticas y en la investigación a raíz de este encuentro que resulta decisivo

Participó en el desarrollo del cálculo moderno estudiando las técnicas sumatorias e integración necesarias en el descubrimiento del isocronismo de la cicloide: Cuando un péndulo recorre un arco de cicloide, el periodo de oscilación es constante, independientemente de la amplitud.

Huygens escribió el primer libro sobre teoría e probabilidades publicado en 1657

Trabajó en óptica donde descubrió, el primero, la naturaleza ondulatoria de la luz, explicando así los efectos de refracción y difracción. Asimismo descubrió los anillos de Saturno presentidos por Galileo y su primer satélite: Titán 

Bishop

El matemático estodounidense Errett Albert Bishop es conocido por sus trabajos en análisis,es un matemático formado dentro del llamado “hard analysis” (análisis duro) de los epsilons y los deltas, discípulo de Paul R. Halmos, reabre de nuevo, en la década de los años sesentas del siglo pasado, el camino hacia el eonstructivismo, aquel enfoque de las matemáticas que a fines del siglo XIX, había iniciado Kronecker, en contravía a los procesos de aritmetización del análisis iniciados por Weiersstrass y Cantor. Alrededor de 1920 Brouwer y sus discípulos a través del enfoque intuicionista intentaron desarrollar el análisis por métodos constructivistas, sin mayor éxito.  

La aproximación al constructivismo por parte de Bishop, no es filosófica, sino más bien diríamos, está motivada desde el interior del análisis. La idea era salir del patrón estandarizado de la teoría de conjuntos y reemplazarlo por un nuevo paradigma como es el constructivismo. El objetivo central de su programa era reemplazar las pruebas conjuntistas de los teoremas del análisis, por pruebas esencialmente constructivistas, donde los objetos matemáticos que entran en el proceso deben ser construidos en forma algorítmica y su existencia no puede darse por sentada sino hasta que se conozca un procedimiento para construir tales objetos. Los seguidores de esta versión de escuela constructivista, ya no son, necesariamente lógicos o filósofos interesados en los fundamentos del análisis, sino matemáticos de áreas como álgebra, topología o análisis. La obra principal de Bishop llegó a constituirse en texto en algunas universidades, aunque en nuestros días ya no circula y solamente se consiguen copias para coleccionistas

Mac Lane

Saunders Mac Lane  fue un matemático estadounidense cofundador de la teoría de categorías con Samuel Eilenberg.

Publicó su primer documento científico, en física en coautoría con Irving Langmuir. Asistió a University of Göttingen donde estudió lógica y matemáticas bajo la supervisión de Paul Bernays, Emmy Noether y Hermann Weyl. El instituto Göttingen's Mathematisches le otorgó el doctorado en el año 1934.

Después de una tesis en lógica matemática sus primeros trabajos fueron en teoría de campos anillos de evaluación, vectores de Witt y separabilidad en extensiones de campos infinitas. Él empezó a escribir acerca de extensiones de grupos en 1942 y comenzó su época de colaboración con Samuel Eilenberg en 1943 resultando en los ahora llamados espacios de Eilemberg-Mac Lane K(G,n) que tienen un solo grupo de homotopía no trivial G en dimensión n. Este trabajo abrió el camino a la cohomología de grupos en general.

Después de introducir a través de los axiomas de Eilenberg–Steenrod el enfoque abstracto de la teoría de homología él y Eilenberg dieron origen a la teoría de categorías en 1945. Mac Lane es especialmente conocido por su trabajo en teoremas de coherencia. Una característica recurrente en la teoría de categorías, álgebra abstracta y en algunas otras ramas de las matemáticas, es el uso de diagramas formados por flechas (morfismos) conectando objetos, así como productos y coproductos. 

Ehrenfest-Afanassjewa

La matemática rusa Tatjana Aleksejevna Afanasjeva contribuyó a la mecánica estadística, la termodinámica, la entropía, la teoría de la probabilidad y a la didáctica de las matemáticas.

Estudió en Göttingen donde conoció al físico austriaco Paul Ehrenfest con quien se casó, renunciando ambos a sus religiones, y con quien trabajó en estrecha colaboración.

Su trabajo más famoso fue su estudio clásico de la mecánica estadística de Boltzmann .Publicó un libro y numerosos artículos sobre diversos temas como el azar en el comportamiento de los termodinámica y entropía y geometría educación para los niños

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Matemáticos del día
Comenta este artículo

Comentarios

Artículos Recientes

  • Matemáticos del día
    La prueba final de una teoría es que sea capaz de resolver los problemas que la originaron T.Dantzig Matemáticos que han nacido o fallecido el día 23 de Septiembre Matemáticos nacidos este día: 1768 : Wallace1819 : Fizeau1851 : Hayes1852 : Grobli1900...
  • EL LADRÓN DE NARANJAS
    EL LADRÓN DE NARANJAS Un ladrón un cesto de naranjas del mercado robó y por entre los huertos escapó; al saltar una valla, la mitad más media perdió; perseguido por un perro, la mitad menos media abandonó; tropezó en una cuerda, la mitad más media desparramó;...
  • Matemáticos del día
    Un centro de excelencia es, por definición, un lugar donde la gente de segunda clase puede realizar un trabajo de primera clase M.Faraday Matemáticos que han nacido o fallecido el día 22 de Septiembre Matemáticos nacidos este día: 1765 : Ruffini1769 :...
  • Matemáticos del día
    Ten en cuenta también que es posible hacer ciertas concesiones a la amenidad, cuando se escribe de cuestiones matemáticas, como es frecuente en los libros de historia G. Cardano Matemáticos que han nacido o fallecido el día 21 de Septiembre Matemáticos...
  • Matemáticos del día
    Un matemático es alguien que puede tomar una taza de café y convertirla en una teoría P.Erdös Matemáticos que han nacido o fallecido el día 20 de Septiembre Matemáticos nacidos este día: 1674 : Manfredi1842 : Brill1861 : Cole1874 : Mihály Bauer1887 :...
  • Matemáticos del día
    La prueba final de una teoría es que sea capaz de resolver los problemas que la originaron T.Dantzig Matemáticos que han nacido o fallecido el día 19 de Septiembre Matemáticos nacidos este día: 1749 : Delambre1790 : Terrot1840 : McClintock1888 : Alexander1889...
  • Matemáticos del día
    Mejor que de nuestro juicio, debemos fiarnos del cálculo algebraico L.Euler Matemáticos que han nacido o fallecido el día 18 de Septiembre Matemáticos nacidos este día: 1752 : Legendre1819 : Foucault1863 : Metzler Matemáticos fallecidos este día: 1783...
  • Matemáticos del día
    Hemos utilizado el término subgrupo subinvariante pues el término subgrupo subnormal puede ser innecesariamente molesto Marshall Hall Jr. Matemáticos que han nacido o fallecido el día 17 de Septiembre Matemáticos nacidos este día: 1743 : Condorcet1826...