Overblog
Edit post Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

22 abril 2021 4 22 /04 /abril /2021 05:07

Dos cosas son infinitas: el universo y la estupidez humana; y yo no estoy seguro sobre el universo..

A.Einstein.

 Matemáticos que han nacido o fallecido el día 22 de Abril

 

      


Matemáticos nacidos este día:

1592 : Schickard
1724 : Immanuel Kant
1811 : Hesse
1830 : Hirst
1861: Emil Müller
1884 : Enskog
1887 : Harald Bohr
1891 : Jeffreys
1903 : Morishima
1910 : Steenrod
1929 : Atiyah
1934: Ene-Margit Tiit
1935 : Srinivasan
1946 : Paul Davies

Matemáticos fallecidos este día:

1945 : Cauer
1945 : Feldbau
1948 : Richmond
2008 : Whiteside

 

 

 

 

 

Curiosidades del día

  • Hoy es el centésimo décimo segundo día del año.
  • 112 es un número práctico, es un número positivo n tal que todos los enteros positivos menores que él se pueden escribir como sumas de distintos divisores de n.
  • 112 es el único número de tres cifras tal que su factorial elevado a la suma de sus cifras menos uno es primo 112=112!1+2+3-1 es primo.
  • 112 es suma de seis primos consecutivos 112=11+13+17+19+23+29.
  • 112=1x2+2x3+3x4+4x5+5x6+6x7. 
  • 112 es un número abundante pues es menor que la suma de sus divisores propios.

Tal día como hoy del año:

  • 1715, Se observó un eclipse solar total en Inglaterra desde Cornualles en el suroeste hasta Lincolnshire y Norfolk en el este. Este eclipse se conoce como Eclipse de Halley, en honor a Edmund Halley (1656-1742), quien predijo este eclipse con una precisión de 4 minutos. Halley observó el eclipse desde Londres donde la ciudad de Londres disfrutó de 3 minutos 33 segundos de totalidad
  • 1937, Se lee "La ley de los números anómalos" ante la American Philosophical Society. Este artículo describe la idea matemática que ahora se llama más comúnmente Ley de Benford 
  • 1939, Frederic Joliot y su grupo publican su trabajo sobre los neutrones secundarios liberados en la fisión nuclear. Esta fue la primera demostración de que una reacción en cadena es posible. Joliot fue uno de los científicos mencionados en la carta de Albert Einstein al presidente Roosevelt como uno de los principales científicos en el curso de las reacciones en cadena

Schickard

El matemático, teólogo y cartógrafo alemán Wilhelm Schickard es famoso por haber construido la primera calculadora automática en el año 1623.
Muchos creían que la primera sumadora mecánica en contar con un mecanismo de acarreo fue inventada por Blaise Pascal, esa noción cambió cuando en 1957 el Dr. Franz Hammer, quien era entonces asistente del encargado de los documentos de Johannes Kepler, (astrónomo y matemático alemán), descubrió algunas cartas de un profesor y ministro luterano alemán llamado Wilhelm Schickard dirigidas a Kepler, las cuales contenían descripciones de una máquina que éste diseñara para automatizar totalmente las sumas y las restas y parcialmente la multiplicación y la división.
Sus áreas principales de investigación incluían la astronomía, las matemáticas y la topografía. Además, inventó un buen número de máquinas para diversos fines, entre las que se cuenta una para calcular fechas astronómicas y otra para ayudar a aprender la gramática del hebreo.
También realizó contribuciones importantes a la cartografía, desarrollando técnicas que permitieron la realización de mapas mucho más precisos que los existentes en su época. Como matemático, desarrolló métodos que siguieron en uso hasta el siglo XIX. Asimismo, era un buen pintor, un buen tallador y un mecánico aceptable.
Hesse

El matemático alemán Ludwig Otto Hesse obtuvo su doctorado, dirigido por Jacobi, sobre superficies algebraicas: sobre los 8 puntos de intersección de tres superficies de segundo orden

Trabajó en geometría analítica siendo uno de los padres de la geometría algebraica moderna.Trabajó en la teoría de invariantes. La matriz hessiana y la forma normal de Hesse son nombrados en su honor. Formó  el  determinante,  llamado  hessiano,  con  los  segundos  cocientes  diferenciales  de  una  función.  Extendió  el  método  de  Euler  de  eliminación  de  ecuaciones lineales al caso de tres ecuaciones con dos incógnitas. Completó (1857) las investigaciones de  Jacobi  sobre  la  variación  segunda  de  una  integral,  que  puede  ser  ampliada  a variaciones  de  orden  superior. Definió (1861) la ecuación normal de la recta y del plano. Estudió (1844) analíticamente las redes  de  cónicas,  demostrando  que  los  polos  conjugados  respecto  a  todas  las  cónicas  de la  red,  están  sobre   una   cúbica,   que   Cremona   llamó   “curva   de   Hesse”   de   la   red,   y   demostrando   también   analíticamente  el  teorema  de  Steiner,  que  dice  que  los  vértices  de  dos  triángulos  polares respecto  de  una cónica pertenecen a su vez a otra cónica, y realizando investigaciones más generales sobre cónicas conjugadas.  También  demostró  que  a  una  cúbica  dada  corresponden  tres  redes  distintas  de cónicas.  Estudió la sectriz que lleva su nombre (1849). Continuó las investigaciones (1850) sobre la ecuación de una  curva  en  coordenadas  tangenciales  y  empleó  en  muchos  de  sus  trabajos  las  coordenadas  homogéneas en  el  espacio.  Estudió  la  cuestión  de  los  ejes  de  las  cuádricas,  considerando  las  direcciones  conjugadas de  éstas.  Demostró  (1840)  que  por  los  ocho  vértices  de  dos  tetraedros  conjugados pasan ∞2 cuádricas. Dio solución a la construcción de una cuádrica definida por 9 puntos. Profundizó  en  geometría  proyectiva, continuando  las  investigaciones,  la  mayor  parte  de  las  veces  analíticamente, de Pascal y Steiner. Completó la demostración incompleta de Plücker sobre los nueve puntos de inflexión de una cúbica, de los que seis son imaginarios, y que yacen sobre una recta de tal forma  que  hay  doce  de  tales  rectas,  demostrando  Hesse  que estas  doce  rectas  pueden  agruparse  en  cuatro  triángulos.  Extendió  (1842)  los  teoremas  de  Pascal  y Brianchon  a  un  hexágono  formado  por  generatrices de una cuádrica.

Harald Bohr, el matemático futbolista

    

El matemático danés Harald Borh, hermano del premio nobel de física Niels Bohr, fue fundador del campo de las funciones casiperiódicas. Trabajó sobre  la distribución de los números primos en los enteros

Trabajó en  Análisis Matemático y su doctorado trató de su contribución a la  teoría de las Series deDirichlet. De una colaboración con Landau en la Universidad de Götingen dio lugar al teorema de Bohr-Landau. Fue catedrático en la Universidad de Copenhague desde 1930 hasta su muerte. Era judío y por lo tanto crítico con las políticas antisemitas del “establishment” de los matemáticos alemanes y ayudó a necesitados y huidos del régimen nazi. 

Fue medalla de platas en los Juegos Olimpicos de verano de 1908 con el equipo de futbol danés.

 Atiyah

     

El matemático inglés Sir Michael F. Atiyah ocupó la prestigiosa Cátedra Saviliana de Geometría en Oxford desde 1963, la cual conservó hasta 1969 cuando fue designado profesor de matemáticas en el Instituto para Estudios Avanzados en Princeton. Después de tres años en Princeton, Atiyah regresó a Inglaterra, donde fue nombrado Profesor Investigador de la Real Sociedad en Oxford.

Michael Atiyah ha hecho contribuciones en una amplia gama de temas de matemáticas centrados alrededor de la interacción entre la geometría y el análisis. Su primera contribución importante (en colaboración con F. Hirzebruch) fue el desarrollo de una nueva y poderosa técnica en topología (teoría K) que condujo a la solución de muchos problemas extraordinariamente difíciles. Posteriormente (en colaboración con I. M. Singer) estableció un importante teorema acerca  del número de soluciones de ecuaciones diferenciales elípticas. Este ‘teorema del índice’ tenía sus antecedentes en la geometría algebraica y condujo a importantes nuevos vínculos entre la geometría diferencial, la topología y el análisis. Combinado con ciertas consideraciones de simetría lo llevó (junto con R. Bott) a un nuevo y refinado 'teorema de punto fijo’ con vastas aplicaciones.

Por estos primeros logros se le otorgó la Medalla Fields en el Congreso Internacional de Matemáticos en Moscú en 1966

Steenrod

 

El matemático norteamericano Norman Earl Steenrod es conocido por su contribución a la topología algebraica. Terminó su doctorado bajo la dirección de Solomon Lefschetz, con una tesis titulada Universal homology groups

Es conocido por la introducción del álgebra Steenrod a través de su trabajo en la clasificación de los mapas de homotopía de un complejo en una esfera.

Uno de los otros temas principales de investigación de Steenrod fueron los  haces de fibras. Publicó un libro sobre el tema que se ha convertido en un clásico,The Topology of Fibre Bundles

Finalmente, mencionar la importante labor que Steenrod hizo en las teorías de homología con la aparición del famoso libro Fundamentos de la topología algebraica, escrito junto con Samuel Eilenberg y publicado en 1952. Los autores se comprometieron a escribir un segundo volumen de esta obra, pero nunca se hizo.

Davies

El físico, escritor y locutor británico Paul Charles William Davies ha ocupado cargos académicos en la Universidad de Cambridge, Universidad de Londres, Universidad de Newcastle, Universidad de Adelaida y en la Universidad de Macquarie, Sídney. Sus investigaciones se centran en el campo de la cosmología, teoría cuántica de campos, y astrobiología. Davies considera que un viaje de solo ida a Marte es una opción viable.

En 2005 aceptó la presidencia del Grupo de Trabajo de Postdetección del SETI de la Academia Internacional de Astronáutica.

En abril de 1999 el asteroide 1992 OG fue llamado oficialmente (6870) Pauldavies en su honor.

Whiteside

El historiador de las matemáticas británico Derek Thomas "Tom" Whiteside fue la primera autoridad en la obra de Isaac Newton y editor de los artículos matemáticos de Isaac Newton . Desde 1987 hasta su jubilación en 1999, fue profesor de Historia de las Matemáticas y de las Ciencias Exactas de la Universidad de Cambridge 

Recibió la medalla Koyré  (1968), FBA (1975) y Medalla George Sarton (1977) 

Morishima

 

El matemático japonés Taro Morishima tenia en la teoría algebraica de números su  gran pasión y su amor particular con el último teorema de Fermat. Su primer trabajo sobre el último teorema de Fermat fue publicado en las Actas de la Academia Imperial de Japón en 1928. Fue el primero de doce artículos escritos en alemán con el título Über die Fermatsche Vermutung,diez de estos artículos están en las Actas de la Academia Imperial de Japón. entre los años 1928 y 1935 En 1935 había publicado un total de dieciséis artículos. También publicó una monografía sobre el problema de Fermat (1934) en japonés. Todos los artículos están llenos de buenas ideas, pero son muy difíciles de leer pues Morishima no presentó suficientes detalles.

Hirst

Hirst thumbnail

El matemático  inglés Thomas  Archer Hirst estudió en la Universidad de Marburgo. En 1844, al morir su padre en un accidente cuando él tenía quince años, su madre lo puso a trabajar como aprendiz de un ingeniero, Richard Carter, que hacía la topografía por los nacientes ferrocarriles en Halifax . Aquí conoció John Tyndall que era el agrimensor principal, con quien haría una amistad para toda la vida y quien la inspiraría su carrera académica.Aunque Hirst estuvo siempre en el centro de la élite matemática y científica de Londres, (fue fellow de la Royal Society , presidente de la London Mathematical Society, fundador del X-Club, impulsor de la Asociación para la Mejora de la Enseñanza de la Geometría, etc.), su nombre estaría totalmente olvidado si no fuera por sus diarios Fue profesor en la Universidad College de Londres y director de   estudios   en   la   Escuela   Naval   Real en   Greenwich.   Investigó   en   geometría   proyectiva,   especializándose en las transformaciones de Cremona, y en la aplicación de la inversión en el espacio (1865).

Jeffreys

Jeffreys thumbnail

El astrónomo y geofísico inglés Harold Jeffreys, se doctoró (1917)  en  Newcastle-upon-Tyne. Trabajó  en  la  Oficina  Meteorológica  (1917-1922).  Profesor  en  Cambridge  de  matemáticas (1923-1932),  de  geofísica  (1932-1946)  y  de  astronomía  (1945-1958).  En  relación con ecuaciones diferenciales de la forma y’’ + λ2q(x,λ)y = 0, donde λ es un parámetro positivo grande, pudiendo ser x real o complejo, la solución se suele dar con un término de error en función de λ.  La  aproximación más  general  y  precisa  de  este  término  aparece  explícitamente  en  artículos  de  Wentzel   (1926),   Kramers   (1926),   Brillouin   (1926)   y   Jeffreys   (1923),   conociéndose   dicha   aproximación  como  la  solución  WKBJ.  Todos  ellos  fueron  físicos  que  trabajaron  en  teoría cuántica  con la ecuación de Schrödinger. La aplicación de la solución WKBJ para valores grandes de λ da dos soluciones para x > 0 y otras dos para x < 0, y falla para los valores de x tales que q = 0. La cuestión de cuál es la solución válida sobre el intervalo en el que se trata de resolver la ecuación diferencial, se resuelve con las llamadas fórmulas de conexión, cuyo primer tratamiento sistemático fue realizado por Jeffreys,  que  obtuvo  fórmulas  de  conexión  por  medio  de  series  asintóticas y por  medio  de  una  ecuación de aproximación. Entre otras obras, publicó La Tierra: su origen, historia y su constitución física  (1924),  Inferencia  física  (1931), Tensores  cartesianos  (1931),  Terremotos  y  montañas  (1935),  Métodos de física matemática (1946).

Srinivasan

Srinivasan thumbnail

La matemática  india Bhama Srinivasan es conocida por su trabajo en teoría de representación de grupos finitos. Después de graduarse con una licenciatura, ingresó a la Universidad de Madras para realizar estudios de posgrado para una maestría. Esto pronto demostró ser una mejora notable en su curso universitario y pudo asistir a cursos de conferencias sobre temas de interés matemático actual. Fue en este momento que se encontró por primera vez con las ideas de 'álgebra moderna' tal como las expuso Bartel van der Waerden en su obra maestra de dos volúmenes de 1930 :
Una presencia importante en la escena matemática en Madras fue un sacerdote jesuita, el padre Racine, quien dirigió el Departamento de Matemáticas en el Colegio Loyola. Conocía los últimos desarrollos matemáticos en Europa. Varios de sus estudiantes universitarios luego investigaron en el prestigioso Instituto Tata de Investigación Fundamental en Bombay. Sin embargo, el Colegio Loyola no admitía mujeres y, por lo tanto, a las estudiantes se les negaba la oportunidad de estudiar y ser notadas por el Padre Racine. La primera suerte que tuve fue que el padre Racine dio un curso de álgebra abstracta en la Universidad de Madras, utilizando el gran texto de van der Waerden basado en conferencias de Emmy Noether. También tuve cursos sobre topología y otras materias de otros dos excelentes profesores. Por lo tanto, de repente fui empujado hacia el siglo XX, y esta fue una experiencia emocionante para mí. Sin embargo, no tenía ninguna ambición de ser investigador en matemáticas en esta etapa, o, para el caso, seguir una carrera seria.

 Sus contribuciones han sido reconocidas a través de una Conferencia Noether en 1990: The Invasion of Geometry into Finite Group Theory. Fue presidenta de la Association for Women in Mathematics entre 1981 y 1983.

Kant

Kant gemaelde 3.jpg

El filósofo alemán, formado como matemático y físico Immanuel Kant fue  estudiante  de  teología  pero  se  interesó principalmente por las matemáticas y las cuestiones científicas y cosmológicas, especialmente por   la   obra   de   Newton.   Trabajó   como   tutor   familiar   (1746-1755)   hasta   que   se   graduó.   Fue   “privatdozent”  durante  15  años.  La  lectura  de  Leibniz  y  Hume  determinó  el  nuevo  periodo  de  su  búsqueda, dirigida al problema del conocimiento. En 1770 fue profesor de lógica y metafísica. En su Crítica de la razón pura (1781) hizo del espacio euclidiano una intuición pura a priori, indicando que las  propiedades  del  espacio  físico  eran  euclídeas.  Kant  sostenía  que  nuestra  mente  suministra  ciertos  modos  de  organización  (los  llamó  intuiciones)  del  espacio  y  el  tiempo  y  que  la  experiencia  es  absorbida y organizada por nuestras mentes de acuerdo con esos modos o intuiciones. Nuestras mentes están  de  tal  modo  constituidas,  que  nos  obligan  a  ver  el  mundo  exterior  sólo  de  una  manera.  Como  consecuencia,  ciertos  principios  acerca  del  espacio  son  anteriores  a  la  experiencia;  estos  principios  y  sus  consecuencias  lógicas,  que  Kant  llamó  verdades  sintéticas  a  priori,  son  las  de  la  geometría  euclídea. Conocemos la naturaleza del mundo exterior sólo en la medida en que nuestras mentes nos obligan a interpretarla. Sobre estas bases, Kant afirmó, y sus contemporáneos aceptaron, que el mundo físico  debía  ser  euclídeo.  Por  otra  parte,  la  idea  de  Kant  de  que  no  era  necesaria  “ninguna  nueva  invención  en  la  lógica”,  coadyuvó  de  alguna  forma  al  estancamiento  del  desarrollo  de  la  lógica  matemática  durante  el  siglo  XVIII  y  principios  del  XIX.  Laplace,  en  su  Exposición  del  sistema  del  mundo (1796) expuso el problema del origen del sistema solar, donde aparece la concepción conocida con  el  nombre  de  “hipótesis  de  la  nebulosa”  o  “hipótesis  de  Kant  y  Laplace”,  pues  Kant  había  expuesto  una  hipótesis  similar  en  1755.  Kant  escribió  además,  entre  otras  obras,  Crítica  de  la  razón  práctica (1788) y Crítica del juicio (1790).

Enskog

El físico matemático sueco David Enskog ayudó a desarrollar la teoría cinética de los gases ampliando las ecuaciones de Maxwell-Boltzman

Después de sus estudios universitarios en la Universidad de Uppsala , recibió una licenciatura en física en 1911, trabajando en difusión de gases con el profesor Gustaf Granqvist , quien era un experimentalista. Sin embargo, Enskog no deseaba continuar con la física experimental y contactó con el profesor Carl Wilhelm Oseen para su doctorado. Desde 1913, Enskog trabajó como profesor de secundaria en matemáticas y física para mantenerse a sí mismo y a su familia, mientras continuaba su investigación y redacción de tesis en su tiempo libre. En 1917 completó su tesis sobre teoría cinética de gases en Uppsala. Como su tesis se consideró oscura y difícil de comprender, recibió una calificación bastante mediocre, lo que no lo calificó para convertirse en docente , que fue el siguiente paso esencial en una carrera académica sueca.

Enskog, por tanto, siguió trabajando como profesor de secundaria, pero se puso en contacto con Sydney Chapman , que había trabajado en los mismos problemas que Enskog. Ya en 1917, Chapman reconoció la importancia del trabajo de Enskog. En la década de 1920, las contribuciones de Enskog a la teoría cinética de los gases se hicieron más reconocidas. En 1929, Enskog intentó regresar al mundo académico solicitando dos cátedras en Estocolmo , una en mecánica y física matemática en el Stockholm University College y otra en matemáticas y mecánica en el Royal Institute of Technology (KTH). Enskog no obtuvo la cátedra en el University College,  el comité de selección de KTH estaba dividido y se inclinaba hacia Hilding Faxén hasta que Chapman, en una visita a Suecia, expresó su firme apoyo a Enskog y escribió una carta de recomendación en su nombre. Finalmente, Enskog fue nombrado profesor en KTH el 12 de diciembre de 1930. Como profesor de KTH, Enskog se enfrascó principalmente en tareas docentes y no hizo muchas más investigaciones.

La fusión de las teorías de Chapman y Enskog más tarde se conoció como el método Chapman-Enskog para resolver la ecuación de Boltzmann. En un libro de 1939 llamado The Mathematical Theory of Non-Uniform Gases , escrito por Chapman y Thomas Cowling y dedicado a David Enskog, los autores expandieron esta teoría bajo la designación Chapman-Enskog.

Un mayor reconocimiento del trabajo de Enskog se produjo en 1945, cuando se publicó el Informe Smyth sobre el proyecto de armas atómicas de EE. UU. Chapman y Enskog fueron mencionados como los descubridores de la difusión térmica , que fue uno de los métodos utilizados para enriquecer el uranio 235 para las primeras armas nucleares. Enskog fue el único científico sueco mencionado en este informe. Enskog fue elegido miembro de la Real Academia Sueca de Ciencias de la Ingeniería en 1941, y finalmente de la Real Academia Sueca de Ciencias el 28 de mayo de 1947, solo unos días antes de su muerte

Compartir este post
Repost0

Comentarios

Artículos Recientes

  • Matemáticos del día
    ... excelsas, supremas, excelentísimas, incomprensibles, inestimables, innumerables, admirables, inefables, singulares..., que corresponden por semejanza a Dios mismo L.Pacioli Matemáticos que han nacido o fallecido el día 8 de Mayo Matemáticos nacidos...
  • Matemáticos del día
    Conviene que todos los ciudadanos entren en contacto con la verdadera matemática, que es método, arte y ciencia, muy distinta de la calculatoria, que es técnica y rutina L.A.Santaló Matemáticos que han nacido o fallecido el día 7 de Mayo Matemáticos nacidos...
  • Matemáticos del día
    Caballeros, esto es sin duda cierto, es absolutamente paradójico, no podemos comprenderlo y no sabemos lo que significa, pero lo hemos demostrado y, por lo tanto, sabemos que debe ser verdad. C.S.Peirce Matemáticos que han nacido o fallecido el día 6...
  • Uno de los teoremas más famosos de la historia
    La prueba de la completitud del cálculo de predicados afianzó a los matemáticos que trabajaban en el campo de los fundamentos en idea de que el programa de Hilbert sería viable. Sin embargo, un año después, en 1931, el propio Gödel echó por tierra todas...
  • Matemáticos del día
    En las matemáticas es donde el espíritu encuentra los elementos que más ansía: la continuidad y la perseverancia. A. France Matemáticos que han nacido o fallecido el día 5 de Mayo Matemáticos nacidos este día: 1580 : Faulhaber 1833 : Fuchs 1842 : Heinrich...
  • Matemáticos del día
    Los hechos no hablan. Poincaré Matemáticos que han nacido o fallecido el día 4 de Mayo Matemáticos nacidos este día: 1733 : Borda 1840 : Rebstein 1845 : Clifford 1876 : Jung 1888: Raymond Butchart 1916 : Montroll 1918: George Carrier Matemáticos fallecidos...
  • Matemáticos del día
    Una buena notación tiene tantas sutilezas y sugerencias que, en ocasiones, se asemeja a un maestro viviente. B.Russell Matemáticos que han nacido o fallecido el día 3 de Mayo Matemáticos nacidos este día: 1842 : Stolz 1857 : Fraser 1860 : Volterra 1905...
  • Matemáticos del día
    La mecánica es el paraíso de las ciencias matemáticas, porque con ella se alcanza el fruto matemático. Leonardo Da Vinci Matemáticos que han nacido o fallecido el día 2 de Mayo Matemáticos nacidos este día: 1588 : Étienne Pascal 1860 : D'Arcy Thompson...