Overblog
Edit post Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

29 septiembre 2022 4 29 /09 /septiembre /2022 05:14

 

272 es un número cortés Las matemáticas son las búsqueda de pautas

R.P.Feynman

Matemáticos que han nacido o fallecido el día 29 de Septiembre

      

Matemáticos nacidos este día:

1561 : Roomen
1803 : Sturm
1812 : Göpel
1868 : Bosworth
1876 : Scorza
1895 : Hotelling
1901 : Fermi
1935 : Furstenberg

Matemáticos fallecidos este día:

1928 : Steinitz
1939 : Dickstein
1941 : Engel

1945: Evan James Williams

1982: Letitia Chitty
1986: Dov Jarden
2003 : Arino

  • Curiosidades del día
  • Hoy es el ducentésimo septuagésimo segundo día del año. 
  • 272 es  suma de 4 primos consecutivos, 272=61+ 67+ 71+73.
  • 272=4x(44+4!)
  •  272 es un número Pronic, producto de dos enteros consecutivos, 272=16x17.
  • 272 es un número alternativo pues sus dígitos alternan entre pares e impares
  • 272 es un número capicúa al igual que la suma de sus cifras, 11
  • En principio, un polígono con 272 lados puede construirse con regla y compás
  • 272 es un número pernicioso pues su expresión binaria 100010000 contiene un número primo (2) de unos
  • 272 es un número odioso pues su expresión binaria contiene un número impar de unos.
  • 272 es un número cortés pues puede expresarse como suma de naturales consecutivos  8 + ... + 24
  • 272 es un número primitivo abundante ya que es menor que la suma de sus divisores propios, ninguno de los cuales es abundante
  • 272 es un número abundante pues la suma de sus divisores propios es mayor que él.
  • 272 es un número práctico pues todos los enteros positivos menores que él se pueden escribir como sumas de distintos divisores de 272.
  • 272 es un número ondulado

Tal día como hoy del año:

  • 1609, Casi exactamente un año después de la primera solicitud de patente del telescopio, Giambaptista della Porta, el erudito napolitano, cuya Magia Naturalis de 1589, bien conocida en toda Europa, debido a una sugerente sugerencia de lo que podría lograrse mediante una combinación de una lente convexa y cóncava: 'Con una cóncava verás pequeñas cosas de lejos, muy claramente; con un convexo, las cosas nunca deben ser más grandes, pero más oscuras: si sabes cómo encajar las dos juntas, verás las dos cosas de lejos y las cosas cercanas, tanto más grandes como claras '', envía una carta al fundador de la Accademia dei Lincei, el príncipe Federico Cesi en Roma, con un boceto de un instrumento que le acababa de llegar
  • 1801, Se publica Disquisitiones Arithmeticae de Gauss. Es un libro de texto de teoría de números escrito en latín por Carl Friedrich Gauss en 1798 cuando Gauss tenía 21 años y publicado por primera vez en 1801 cuando tenía 24. En este libro, Gauss reúne los resultados de la teoría de números obtenidos por matemáticos como Fermat, Euler, Lagrange y Legendre y añade importantes nuevos resultados propios.
  • 1954, Se establece oficialmente la Organización Europea para la Investigación Nuclear (CERN), que dirige el laboratorio de física de partículas más grande del mundo en Ginebra, Suiza. En septiembre de 2011, los científicos del CERN informaron que algunas partículas parecían viajar más rápido que la luz, aunque ahora se cree que el experimento fue defectuoso.
Romeen y su ecuación de grado 45º

El matemático flamenco Adrien Van Romeen, Adrianus Romanus, se interesó en el cálculo de pi y en las tablas trigonométricas.

En su primera obra científica ,Ideae mathematicae primasive methodus polygonorum , es el primero en utilizar notación abreviada como sin(A+B)

En este libro lanza el desafio de resolver la ecuación de grado cuarenta y cinco 45x - 3795x3 + 95634x5 - 1138500x7 + 7811375x9 - 34512075x11 + 105306075x13 - 232676280x15 + 384942375x17 - 488494125x19 + 483841800x21 - 378658800x23 + 236030652x25 - 117679100x27 + 46955700x29 - 14945040x31 + 3764565x33 - 740259x35 + 111150x37 - 12300x39 + 945x41 - 45x43 + x45 = C con formule resuelta por el matemático francés Viete 

Sturm

El físico y matemático francés Jacques Charles François Sturm  Fue tutor de la  familia  de Broglie  en  París,  lo  que  le  permitió  conocer  a  muchos  matemáticos  y  científicos.  Fue amigo  de  Liouville.  En  1836  fue  elegido  miembro  de  la  Académie,  en  1838  fue  profesor de  matemáticas en la École Polytechnique en París, y en 1840, de mecánica en la Sorbona. Obtuvo (1829) partiendo de los trabajos de Descartes, el teorema referente al número de raíces de una ecuación algebraica en cada intervalo de la incógnita: El número de raíces de f(x) comprendidas en el intervalo (a,b) coincide con el número de veces que la función f’(x)/f(x) pasa de - ∞ a + ∞, y este número coincide con el exceso de dicha función, completando  el teorema de Budam de Boislaurent. Trabajó principalmente en la comprensibilidad de los líquidos y la velocidad del sonido en el agua, lo que le condujo, en colaboración con Liouville, al estudio de las soluciones  de ecuaciones diferenciales con valores complejos.

Los  problemas  de  la  física  matemática  que  implican  ecuaciones  diferenciales  parciales, contienen  comúnmente  condiciones  de  frontera.  Cuando  el  método  de  separación  de variables  se  aplica  a  una  ecuación  diferencial  en  derivadas  parciales,  esta  ecuación  se descompone  en  dos  o  más  ecuaciones  diferenciales  ordinarias,  y  las  condiciones  de frontera  sobre  la  solución  deseada  se  convierten  en  condiciones  de  frontera  sobre  una ecuación  diferencial  ordinaria.  Esta  ecuación  contiene,  en  general,  un  parámetro,  y  las soluciones  se  obtienen  para  valores  particulares  de  dicho  parámetro.  A  estos  valores se les llama valores propios o característicos, y la solución para cualquier valor propio se llama una función  propia.  Los  problemas  de  determinar  los  valores  propios,  las  funciones  propias  y desarrollar  una  función  dada  en  términos  de  una  serie  infinita  de  funciones  propias,  se hicieron  más  relevantes con las necesidades de la física. Desde 1883, Sturm trabajaba en problemas de ecuaciones diferenciales  en  derivadas  parciales,  principalmente  sobre  el  flujo de  calor  en  una  barra  de  densidad  variable,   y   de   ahí   que   fuera   completamente consciente   de   los   problemas   citados.   Las   ideas   matemáticas   que   aplicó   a   su   resolución   (1836)   están   estrechamente   relacionadas   con   sus   investigaciones de la “realidad” y distribución de las raíces de las ecuaciones algebraicas. Sus ideas en ecuaciones diferenciales, según dice él mismo, provinieron de su estudio de ecuaciones en diferencias y  de un  paso  al  límite.  Liouville,  informado  por  Sturm  de  los  problemas  sobre  los  que  estaba trabajando, se dedicó a la misma materia (1836). Los dos autores escribieron varios artículos sobre sus trabajos sobre la ecuación diferencial general de segundo orden Ly’’ + My’ + λNy = 0, donde L, M, N son funciones continuas de x, L no es cero y λ es un parámetro. Obtuvieron resultados fundamentales, aunque no fueron satisfactorios en todos sus aspectos. Por ejemplo, su demostración de que la función solución f(x) puede ser representada como una suma infinita de las funciones propias, fue inadecuada, aunque  en  algunos  casos  Liouville  sí  proporcionó demostraciones  de  convergencia,  usando  la  teoría  desarrollada por Cauchy y Dirichlet.  

En 1826, Sturm, con el ingeniero suizo Daniel Colladon, realizaron la primera medición exacta de la velocidad del sonido en el agua. En 1841, Sturm estudió la ruleta que lleva su nombre. Escribió Curso de análisis de la École Polytechnique (dos volúmenes, 1857-1863) y Curso de mecánica de la École Polytechnique (dos volúmenes, 1861). 

El nombre de Sturm es parte de la lista de los 72 nombres grabada en la Torre Eiffel.

Scorza 

El matemático italiano Bernardino Gaetano Scorza  contribuyó a la producción científica, especialmente en el campo de la geometría proyectiva , las matrices Reimann y la teoría de álgebras y grupos. Completó el trabajo iniciado por Federigo Enriques Castelnuovo en la geometría de las transformaciones birracionales, sin embargo, sus descubrimientos más importantes permanecen vinculados a las funciones abelianas .

A partir de 1921, el foco principal de su investigación fue la teoría general de álgebras, que lo llevó a enfrentar los problemas de la teoría de números y la teoría de los grupos finitos. En 1942 el volumen de grupos abstractos se publicó a título póstumo, editado por Joseph Scorza Dragoni (su hijo) y Guido Zappa .

También se ha ocupado de los problemas de la economía política y la fotogrametría  

Fue consultor de Giovanni Gentile , entonces Ministro de Educación , como resultado de su reforma educativa de 1923

Hotelling

El estadístico norteamericano  y profesor de Economía en la Universidad de Columbia en los años 30 Harold Hotelling, fue profesor de algunos que llegarían a ser prestigiosos economistas como Kenneth Arrow y Milton Friedman

Se doctoró en Matemáticas en Princeton en 1924 y comenzó como profesor en Stanford University hasta que se mudó a la de Columbia en 1931. 

Las contribuciones teóricas de Harold Hotelling fueron una de las claves de la resurrección de la teoría marginalista en la década de 1930. Una de sus contribuciones más famosas fue la que hizo en 1938, en una conferencia a la Sociedad Econométrica, en la que demostraba que la eficiencia económica es alcanzada si todos y cada uno de los bienes son producidos vendidos al precio que iguala al coste marginal. Esta afirmación es una de las bases de los teoremas Fundamentales de la Economía del Bienestar y de la teoría paretiana del equilibrio general.

Fermi

Enrico Fermi fue un físico y premio Nobel italiano, conocido por haber llevado a cabo la primera reacción nuclear controlada.

Desarrolló un nuevo tipo de estadística para explicar el comportamiento de los electrones (mecánica estadística).

También desarrolló una teoría sobre la desintegración radiactiva beta, y desde 1934 investigó la radiactividad artificial bombardeando elementos con neutrones.

Por este último trabajo fue galardonado en 1938 con el Premio Nobel de Física.

Para no sufrir el hostigamiento político de la Italia fascista, ya que su esposa era judía, Fermi y su familia emigraron a Estados Unidos, donde fue profesor de física en la Universidad de Columbia.

En diciembre de 1942, en la Universidad de Chicago, obtuvo la primera reacción controlada de fisión nuclear en cadena, y hasta el fin de la II Guerra Mundial (1939-1945) trabajó en el desarrollo de la bomba atómica en Los Álamos, Nuevo México Más tarde se opuso al desarrollo de la bomba de hidrógeno por razones éticas.

Después de la guerra, en 1946, Fermi fue profesor de física y director del nuevo Instituto de Estudios Nucleares de la Universidad de Chicago; los estudiantes de todo el mundo iban allí para estudiar con él.

Su carrera se vio truncada por su muerte prematura a causa de un cáncer el 28 de noviembre de 1954. El Premio Enrico Fermi otorgado en su memoria es concedido anualmente a quien más haya contribuido al desarrollo, uso o control de la energía atómica.

Su nombre ha sido distinguido con el honor de designar al elemento atómico nº 100, al que se le dio el nombre de Fermio (Fm). 

Furstenberg

El matemático israelí Hillel (Harry) Furstenberg es miembro de la Academia de Ciencias y Humanidades de Israel y de la Academia Nacional de Ciencias y un laureado del Premio Wolf en Matemáticas. Es conocido por su aplicación de la teoría de la probabilidad y los métodos de la teoría ergódica a otras áreas de matemáticas, incluyendo la teoría de los números y grupos de Lie. Ganó la atención en una etapa temprana en su carrera para producir una prueba innovadora topológica sobre números primos. En 1977, hizo una reformulación de la teoría ergódica, y posteriormente la prueba del teorema de Szemerédi. La frontera Furstenberg y la compactificación Furstenberg de un espacio simétrico a nivel local se nombran después de él.

Steinitz

El matemático alemán Ernst Steinitz Laurahütte, nació en Silesia, antes Alemania (hoy Huta Laura, Polonia) y murió el 29 de septiembre de 1928 en Kiel, Alemania. Ernst Steinitz entró en la universidad de Breslau en 1890. Fue a Berlín para estudiar matemáticas en 1891 y, después de dos años en Berlín, volvió a Breslau en 1893. El año siguiente Steinitz presentó su tesis doctoral en Breslau consiguiendo una plaza al año siguiente como Privatdozent en la Technische Hochschule Berlin - Charlottenburg. El ofrecimiento de una plaza ya de profesor en la Technical College de Breslau hizo que volviera a Breslau en 1910. Diez años más tarde se mudó a Kiel como jefe del Departamento de Matemáticas de esa universidad. Steinitz fue amigo de Toeplitz. Estuvo influenciado por los trabajos de Heinrich Weber y Hensel sobre números p-adicos en 1899. En 1900, cuando era Privatdozent en la Technische Hochschule Berlin - Charlottenburg, en la reunión anual de la Deutsche Mathematiker-Vereinigung en Aachen, Steinitz presentó un trabajo donde introdujo un algebra sobre el anillo de los enteros cuyos elementos son clases de isomorfismo de grupos abelianos finitos. Hoy día conocida como álgebra de Hall. Ya que Steinitz conjeturó varios resultados que después fueron demostrados por Hall. Dio la primera definición abstracta de cuerpo en su trabajo Algebraische Theorie der Körper del año 1910, publicado en el Crelle's Journal (1910), pag. 167–309. En este trabajo elaboró toda una rama del álgebra abstracta conocida como teoría de cuerpos. En este famoso trabajo, introdujo también las nociones de cuerpos primo, cuerpo perfecto, elemento separable y grado de trascendencia de una extensión de cuerpos. También probó que todo cuerpo tiene una clausura algebraica, siendo éste quizás su más famoso teorema. La construcción hoy clásica de los racionales como clases de equivalencia de parejas de números enteros también fue establecida por Steinitz en la misma publicación. Steinitz también trabajó en poliedros en un trabajo póstumo publicado en 1934 El matemático alemán Ernst Steinitz es, junto a Hilbert y Hensel, uno de los fundadores del álgebra axiomática moderna.

Se le debe una "Teoría algebraica de cuerpos", ha dejado su nombre al teorema de Steinitz: " Todo cuerpo conmutativo admite una clausura algebraica"

Recordemos su famosa frase sobre los físicos y matemáticos:

Los matemáticos son orgullosos; los físicos lo dicen, los matemáticos lo demuestran

Engel

El matemático alemán Friedrich Engel, fue profesor en las universidades de Leipzig, Greifswald y Giessen, sus trabajos versaron sobre álgebra abstracta y, en particular, sobre la teoría de grupos de transformaciones. Llevó a cabo una recopilación de la obra de Lie. Escribió Teoría de los grupos de transformaciones.

Estudió  las  geometrías  no  euclídeas.  Pensó  que  aunque  Bartels,  maestro  de  Lobachevski era  amigo  de  Gauss,  muy  difícilmente  podría  Lobachevski  haber  sabido  por Bartels que Gauss dudaba del axioma de las paralelas (V. Bolyai).  Escribió Teoría de los grupos de transformaciones, y con P. Stäckel, Teoría del paralelismo desde Euclides hasta Gauss (1895), e Historia de la geometría no euclidiana (1898-1913). 

Göpel

El matemático  alemán Gustav   Adolph  Göpel,  nació  en  Rostock  (Mecklemburgo-Pomerania Anterior).  Estudió  matemáticas,  física  y  química  en  Rostock,  Pisa  y  en  la  Universidad  de  Berlín, donde se doctoró (1835) con una tesis sobre las ecuaciones indeterminadas de segundo grado. Mantuvo  amistad  con  Crelle.  Estudió  el  problema  de  la  inversión  de  las  integrales  hiperelípticas  de  primera  especie,  formando  las  funciones  inversas  de  las  sumas  de  cada  dos  de  dichas  integrales.  Estudió la serie de cónicas que tienen entre sí un doble contacto, atendiendo a la proyectividad de las series de  puntos y haces de rectas determinados por las cónicas.

Bosworth

 La matemática estadounidense Anne Lucy Bosworth Focke se graduó en el Wellesley College en 1890 y obtuvo una maestría en la Universidad de Chicago en 1896. Fue la primera estudiante (mujer) de doctorado de David Hilbert: Anne Lucy defendió la tesis doctoral Begründung einer vom Parallelenaxiome unabhängigen Streckenrechnung en la Universidad de Gotinga en 1899.

En abril de 1898 , a Bosworth se le concedió una licencia para poder asistir a conferencias en la Universidad de Göttingen en Alemania. Viajó allí con su madre Ellen Bosworth. En Gotinga asistió a las conferencias de Felix Klein sobre mecánica, así como a las conferencias de Arthur Schönflies , Issai Schur y Woldemar Voigt. En el semestre de invierno de 1898 - 99 asistió a las conferencias sobre geometría de David Hilbert: 
En la primavera de 1899 Bosworth "fue convocada" a tomar el té con Hilbert , a cuyas conferencias sobre geometría no euclidiana había asistido, y se le preguntó cuándo tomaría sus exámenes de doctorado. Ella dijo que no tenía tal intención, ni siquiera había pensado en un tema de tesis. Hilbert dijo: "¡Pero tu disertación está terminada"! Parece que ella había hecho un ejercicio especial para él, y se consideró un enfoque completamente original y aceptable como tesis. Entonces, en lugar de pasar el verano viajando por Italia, Grecia, etc., se quedó en Gotinga , realizó sus exámenes y aprobó con nota.
Bosworth presentó su tesis de 57 páginas Begründung einer vom Parallelenaxiome unabhängigen Streckenrechnung a la Universidad de Göttingen y su examen oral tuvo lugar el 31 de julio de 1899 . Hilbert , como examinadora, escribió que su tesis fue : ... un logro sólido e independiente de valor científico.

Compartir este post
Repost0

Comentarios

Artículos Recientes

  • Matemáticos del Día
    La geometría es la única ciencia que Dios se ha complacido en donar a la humanidad. T.Hobbes Matemáticos que han nacido o fallecido el día 4 de Diciembre Matemáticos nacidos este día: 1795 : Carlyle 1806 : John T Graves 1870: Ion Ionescu 1886 : Bieberbach...
  • Matemáticos del Día
    Todo en la vida está sujeto a cálculo. Napoleón Bonaparte Matemáticos que han nacido o fallecido el día 3 de Diciembre Matemáticos nacidos este día: 1901: Levan Gokieli 1903 : Goldstein 1924 : Backus 1933: Dorothy Foster 1936: Jerome Keisler 1967: Marie...
  • Matemáticos del Día
    1010100009 336 es un número pernicioso pues su expresión binaria (Una verdad científica no es más que una cierta infatución del deseo, que vive exclusivamente en la mente. J.Brouwer Matemáticos que han nacido o fallecido el día 2 de Diciembre Matemáticos...
  • Matemáticos del Día
    Las ideas de los matemáticos, como las de los pintores o los poetas, deben ser bellas. La belleza es el primer requisito, no hay lugar permanente en el mundo para unas matemáticas feas. G.H.Hardy Matemáticos que han nacido o fallecido el día 1 de Diciembre...
  • Matemáticos del Día
    La Matemática es la única buena metafísica Lord Kelvin; Matemáticos que han nacido o fallecido el día 30 de Noviembre Matemáticos nacidos este día: 1549 : Savile 1720: María Andresa Casamayor 1852 : Kiselev 1891 : Ince 1904: František Wolf 1923 : Kadets...
  • Matemáticos del Día
    333 es un número cortés pues Abajo Euclides! J.Dieudonné Matemáticos que han nacido o fallecido el día 29 de Noviembre Matemáticos nacidos este día: 1803 : Doppler 1847 : Greenhill 1849 : Lamb 1854 : Beyel 1859 : Franel 1866 : Brown 1879 : Nikolai Krylov...
  • Matemáticos del Día
    Simplificar generalizando A. Grothendieck Matemáticos que han nacido o fallecido el día 28 de Noviembre Matemáticos nacidos este día: 1700 : Nathaniel Bliss 1898: Zyoiti Suetuna 1898 : Wishart 1905 : Albert Tucker Matemáticos fallecidos este día: 1821:...
  • Matemáticos del Día
    La máquina analítica teje patrones algebraicos, así como el telar de Jacquard teje flores y hoja A.Lovelace Matemáticos que han nacido o fallecido el día 27 de Noviembre Matemáticos nacidos este día: 1867 : Arthur Dixon 1909 : Malcev 1914 : Begle 1923...