Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

21 abril 2017 5 21 /04 /abril /2017 07:08

El enigma de los números primos, más cerca de resolverse

Es uno de los problemas matemáticos más antiguos del mundo. El griego Euclides (325-265 años a.C.) fue el primero en mencionar la existencia de los números primos, solo divisibles por sí mismos y por uno (2, 3, 5, 7, 11...). Se consideran infinitos, pero a medida que crecen, la distancia que los separa es cada vez mayor y por lo tanto más complicado dar con ellos. Por si fuera poco, entre este grupo ya raro por sí mismo, existe otro aún más peculiar si cabe, el de los primos gemelos: pares de números primos separados por dos unidades (por ejemplo, 3 y 5, 11 y 13, 41 y 43...). También se supone que son infinitos, pero se trata de una conjetura, nadie ha podido confirmarlo hasta la fecha. Quizás el momento esté cerca. Hasta ahora, el que más se ha acercado a su resolución es James Maynard, un estudiante postdocoral de tan solo 26 años del Centro para la Investigación Matemática de la Universidad de Montreal (Canadá), que ha realizado interesantes progresos en este campo y cuyas conclusiones serán pronto publicadas en una revista científica.

En abril de 2013, Yitang Zhang, un matemático de la Universidad de New Hampshire, presentó una «versión débil» de esta conjetura. Según sus resultados, existen infinitos pares de primos gemelos que se encuentran como mucho a 70 millones de unidades de distancia con su pareja. Podía parecer, y lo era, un número gigantesco, pero al menos era finito.

Poco después, el joven James Maynard fue aún más lejos y redujo la diferencia a 600, un paso importante en el intento de aclarar la conjetura de los primos gemelos y que revive una cuestión sobre la que no se había progresado en años. A través del trabajo en su tesis, encontró una manera de mejorar y simplificar el método de Zhang, sustituyendo una herramienta que estima la probabilidad de que un número sea primo. «Yitang Zhang y yo empezamos desde el mismo punto, pero tomamos caminos completamente diferentes. El método que utilizo es mucho más simple», afirma Maynard en un comunicado de la Universidad de Montreal.

Desde entonces, cientos de investigadores han estado trabajando para reducir la diferencia de 600 a dos y así poder confirmar la validez de la famosa conjetura. Muchos de ellos presentan sus resultados de investigación en un plataforma de colaboración online llamada Polymath. En una disciplina donde los investigadores están acostumbrados a trabajar solos, Maynard reconoce que supone un cambio beneficioso. «Hoy en día, la brecha sigue disminuyendo a través de este esfuerzo de colaboración», anuncia.

En un alarde de franqueza, Maynard reconoce que su método no es suficiente para resolver el enigma. Eso sí, el matemático está convencido de la hipótesis «es verdadera, hay buenas razones para pensar así». En cualquier caso, el enfoque matemático propuesto por Maynard pronto será publicado en una revista científica, según la universidad en la que investiga, y las reacciones de sus compañeros matemáticos han sido positivas. De hecho, su método será útil en la solución de otros problemas matemáticos.

Los números primos no solo son una rareza o un juego para matemáticos, tienen una gran utilidad en la vida diaria. Se utilizan en el campo de la criptografía para garantizar la seguridad y la protección de datos. Por ejemplo, la banca online se basa en los números primos, que están detrás de cada compra protegida en internet. Además, conocer mejor los números primos permitirá resolver problemas complejos en otras disciplinas, como la ingeniería y la química.

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Actualidad
Comenta este artículo

Comentarios

Artículos Recientes

  • Matemáticos del día
    Tendremos que descubrir los mejores métodos... de formalizar lo informalizable R. Thom Matemáticos que han nacido o fallecido el día 24 de Septiembre Matemáticos nacidos este día: 1501 : Cardan1625 : de Witt1801 : Ostrogradski1844 : Max Noether 1861 :...
  • Matemáticos del día
    La prueba final de una teoría es que sea capaz de resolver los problemas que la originaron T.Dantzig Matemáticos que han nacido o fallecido el día 23 de Septiembre Matemáticos nacidos este día: 1768 : Wallace1819 : Fizeau1851 : Hayes1852 : Grobli1900...
  • EL LADRÓN DE NARANJAS
    EL LADRÓN DE NARANJAS Un ladrón un cesto de naranjas del mercado robó y por entre los huertos escapó; al saltar una valla, la mitad más media perdió; perseguido por un perro, la mitad menos media abandonó; tropezó en una cuerda, la mitad más media desparramó;...
  • Matemáticos del día
    Un centro de excelencia es, por definición, un lugar donde la gente de segunda clase puede realizar un trabajo de primera clase M.Faraday Matemáticos que han nacido o fallecido el día 22 de Septiembre Matemáticos nacidos este día: 1765 : Ruffini1769 :...
  • Matemáticos del día
    Ten en cuenta también que es posible hacer ciertas concesiones a la amenidad, cuando se escribe de cuestiones matemáticas, como es frecuente en los libros de historia G. Cardano Matemáticos que han nacido o fallecido el día 21 de Septiembre Matemáticos...
  • Matemáticos del día
    Un matemático es alguien que puede tomar una taza de café y convertirla en una teoría P.Erdös Matemáticos que han nacido o fallecido el día 20 de Septiembre Matemáticos nacidos este día: 1674 : Manfredi1842 : Brill1861 : Cole1874 : Mihály Bauer1887 :...
  • Matemáticos del día
    La prueba final de una teoría es que sea capaz de resolver los problemas que la originaron T.Dantzig Matemáticos que han nacido o fallecido el día 19 de Septiembre Matemáticos nacidos este día: 1749 : Delambre1790 : Terrot1840 : McClintock1888 : Alexander1889...
  • Matemáticos del día
    Mejor que de nuestro juicio, debemos fiarnos del cálculo algebraico L.Euler Matemáticos que han nacido o fallecido el día 18 de Septiembre Matemáticos nacidos este día: 1752 : Legendre1819 : Foucault1863 : Metzler Matemáticos fallecidos este día: 1783...