Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

25 abril 2013 4 25 /04 /abril /2013 04:57

Todo en la vida está sujeto a cálculo

Napoleón.

 Matemáticos que han nacido o fallecido el día 25 de Abril

      

 


Matemáticos nacidos este día:

1849 : Klein
1879 : Edwin Wilson
1900 : Pauli
1903 : Kolmogorov
1912 : Spencer

Matemáticos fallecidos este día:

1840 : Poisson
1945 : Feigl
1978 : Rajagopal
1999 : McCrea
2000 : Lucien Le Cam
2008 : Solitar

 

Pauli

 

El físico teórico austriaco Wolfgang Ernst Pauli nacionalizado estadounidense, es conocido por su trabajo sobre la teoría del espín (del inglés spin "giro, girar").

Sus estudios superiores los cursó en la universidad Ludwig-Maximilian de München, donde tuvo como su profesor guía a Arnold Somerfeld. Con una tesis sobre la teoría cuántica del hidrógeno molecular ionizado, se doctoró en física en el año 1921.

Inmediatamente después de su graduación como doctor en física, Pauli fue a trabajar a la universidad de Göttigen como ayudante de Max Born. Al año siguiente, trabajó con Niels Böhr en el Instituto de Física de Copenhague. Desde esa estadía en Copenhague, Pauli fue un admirador y un amigo de por vida de Niels Böhr; éste dio siempre la mayor importancia a los consejos científicos y a las crítica de Pauli.

En el plano personal Pauli sufrió muchos tropiezos. Su madre se suicidó en 1927, tragedia que lo convirtió en una persona solitaria. Su situación empeoró cuando su padre se volvió a casar pues nunca aceptó a la nueva esposa de su padre, de quien se refería como "madrastra mala". Su primer matrimonio con Kathe Margarette Deppner duró menos de un año. El divorció deterioró aun mas su personalidad y lo hizo caer en el alcoholismo y la disipación de los burdeles. Recuperó su vida gracias al apoyo profesional del afamado psicoterapeuta Carl Jung. En Abril de 1934 contrajo matrimonio con Francisca Bertram.

En el año 1923, fue nombrado docente de la cátedra de física teórica en la Universidad de Hamburgo, puesto que desempeñó hasta 1928. Durante este período, Pauli participó activamente en el desarrollo de la teoría moderna de la mecánica cuántica. Entre sus aportes de esa época, se encuentran el Principio de exclusión – su primer descubrimiento importante en la física atómica– y la teoría no-relativista del espín.

Después del descubrimiento del principio de exclusión y de su rol inspirador en el desarrollo de la mecánica cuántica, Pauli entrega su tercer gran aporte a la ciencia. En efecto, para explicar el decaimiento beta del radio, en 1932 propone la existencia del «neutrino». Esa partícula, ya casi al final de su vida, fue detectada experimentalmente en 1956.

En 1945, recibió el Premio Nobel de Física, otorgado por su decisiva contribución al descubrir, en 1925, una nueva ley de la naturaleza: « el Principio de exclusión o Principio de Pauli ». Para su nominación al premio, uno de los proponentes fue Albert Einstein.

 

Andreï Kolmogorov

El matemático ruso Andreï Nicolaiévitch Kolmogorov fue uno de los matemáticos más brillantes del siglo XX.  Fue alumno de Luzin y de Uryson en la universidad de Moscou.

Excepcionalmente profundo y original, supo dar un enfoque nuevo sobre cada tema que abordaba para, a menudo, cambiarlo radicalmente.

En el transcurso de sus investigaciones sobre teoría del Potencial , fundamentó en 1929 , la teoría axiomática de probabilidades

Junto a su alumno  Vladimir Arnold resolvió el decimotercer problema de Hilbert

 Hizo avances significativos en:

 Probabilidades con los axiomas de Kolmogorov

Teoría de la información con Teoría de la complejidad algorítmica

Topología con espacio de Kolmogorov

Resolvió en parte los problemas sexto y demimotercero de Hilbert

Recibió los premuios Balzan en 1962 y Wolf 1980 (compartido con Cartan)

 

Felix Klein

El matemático alemán Felix Klein es conocido, sobretodo, por haber enunciado el muy influyente Programa de Erlangen que reduce el estudio de las diferentes geometrías al de sus grupos de simetrías respectivos.

Dejó su nombre al grupo de Klein, grupo de 4 elementos producto de dos grupos de dos elementos, y a la botella de Klein, superficie cerrada, sin borde y no orienteable, es decir, para la que no es posible definir interior y exterior.

Klein se doctoró bajo la supervisión de Plücker, en 1868, con la tesis Über die Transformation der allgemeinen Gleichung des zweiten Grades zwischen Linien- Koordinaten auf eine kanonische Form, sobre geometría y aplicaciones a la mecánica. En ella clasificó las líneas complejas de segundo grado usando la teoría de divisores elementales de Weierstrass.

Ese mismo año Plücker murió dejando su trabajo sobre los fundamentos de la geometría lineal incompleto. Klein completó la segunda parte de la Neue Géometrie des Raumes y este trabajo le puso en contacto con Clebsch.

Entre sus alumnos estaban Hurwitz, von Dyck, Rohn, Runge, Planck, Bianchi y Ricci-Curbastro.  En 1875, Klein se casa con Anne Hegel, una nieta del gran filósofo Georg Wilhelm Friedrich Hegel.

En 1871, en Göttingen, Klein publicó dos artículos sobre geometrías no euclídeas en los que mostró que era posible considerar la geometría euclídea y las no euclídeas como casos especiales de una superficie proyectiva con una determinada sección cónica. Demostrando con ello que las geometrías no euclídeas son consistentes si y sólo si lo es la geometría euclídea. Sin embargo, Cayley nunca aceptó los argumentos de Klein (creyendo fálsamente que eran circulares). En realidad, Klein probó la independencia de la geometría proyectiva del axioma de Euclides de las paralelas, demostrando así que tanto la geometría euclidiana como las no euclidianas se encontraban comprendidas en la geometría proyectiva y que eran igualmente verdaderas con respecto a una métrica particular.

Klein pensaba que su trabajo sobre teoría de funciones era su mayor contribución a las matemáticas. Uno de sus éxitos fue el desarrollo de las ideas de Riemann, relacionando la teoría de invariantes, la teoría de números y algebra, la teoría de grupos, la geometría multidimensional y la teoría de ecuaciones diferenciales, las funciones elípticas y las funciones automorfas. 

 

Siméon Denis Poisson

 

El matemático, geometra y físico francés Simeon Denis Poisson,  alumno de Lagrange y  Laplace, ayudante de Fourier, trabajó en integrales definidas, series de Fourier, cálculo de variaciones. Estuvo también interesado en la teoría de probabilidades en la que la ley de Poisson lleva su nombre.

En Lagrange y Laplace encontró Poisson la fuente para aprender los conceptos matemáticos y el apoyo para progresar profesionalmente, y con ellos compartió los principios de la matemática de la Revolución: 

  • La prioridad de los resultados prácticos sobre el rigor procedimental.
  • El interés por la matemática aplicada, la mecánica y la física.
  • La preocupación por la enseñanza de la matemática a través de la elaboración de excelentes manuales.
  • La consideración social de las matemáticas como instrumento necesario para el progreso y el bienestar de los ciudadanos: “el progreso y el perfeccionamiento de las matemáticas –decía Napoleón- están íntimamente ligados a la prosperidad del Estado”

 

Poisson fue considerado por sus contemporáneos un gran científico y un excelente profesor pero también una persona obstinada y con excesivo amor propio, dado a discusiones y controversias. Entre ellas, podemos citar la mantenida con Laplace sobre la teoría de la capilaridad; con Fourier sobre la teoría del calor y con Fresnel, sobre la teoría ondulatoria. O el rechazo, junto con Lacroix, de la memoria presentada por Galoissobre las condiciones “para que una ecuación de grado primo sea resoluble por radicales” que tanta trascendencia ha tenido en el desarrollo de la matemática.  

En 1827 es nombrado geómetra del Bureau des Longitudes en sustitución de Laplace y en 1837 el rey Luís Felipe de Orleans le nombra par de Francia como representante de la ciencia francesa.

 

Poisson es junto a Daniel Bernouilli Fourier uno de los fundadores de la física matemática moderna, estudio por medio del análisis, del comportamiento de un fenómeno, como consecuencia de las leyes - atribuidas por la experiencia - que lo rigen

Entre sus obras destacan:

 

  • Sur les inégalités des moyens mouvements de rotation de la terre (1808)
  • Traité de mécanique (1811-1833)
  • Sur la distribution de la l’électricité à la surface des corps conducteurs (1812)
  • Remarques sur une équation qui se présente dans la théorie des attractions des sphéroïdes (1813)
  • Mémorie sur la théorie des ondes (1816)
  • Mémorie sur la Manière d’exprimer les Fonctions par des Séries de quantités périodiques (1820)
  • Sur la chaleur des gaz et des vapeurs (1823)
  • Mémoire sur la théorie du magnétisme (1824)
  • Théorie nouvelle de l'action capillaire (1831) 
  • Formules relatives aux effets du tir d'un canon sur les différentes parties de son affût (1826,1838)
  • Théorie mathématique de la chaleur (1835)
  • Recherches sur la probabilité des jugements en matières criminelles et matière civile (1837)
  • Recherches sur le mouvement des projectiles dans l'air, en ayant égard à leur figure et leur rotation, et à l'influence du mouvement diurne de la terre (1839)

 

 

 

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Matemáticos del día
Comenta este artículo

Comentarios

Artículos Recientes

  • EL LADRÓN DE NARANJAS
    EL LADRÓN DE NARANJAS Un ladrón un cesto de naranjas del mercado robó y por entre los huertos escapó; al saltar una valla, la mitad más media perdió; perseguido por un perro, la mitad menos media abandonó; tropezó en una cuerda, la mitad más media desparramó;...
  • Matemáticos del día
    Un centro de excelencia es, por definición, un lugar donde la gente de segunda clase puede realizar un trabajo de primera clase M.Faraday Matemáticos que han nacido o fallecido el día 22 de Septiembre Matemáticos nacidos este día: 1765 : Ruffini1769 :...
  • Matemáticos del día
    Ten en cuenta también que es posible hacer ciertas concesiones a la amenidad, cuando se escribe de cuestiones matemáticas, como es frecuente en los libros de historia G. Cardano Matemáticos que han nacido o fallecido el día 21 de Septiembre Matemáticos...
  • Matemáticos del día
    Un matemático es alguien que puede tomar una taza de café y convertirla en una teoría P.Erdös Matemáticos que han nacido o fallecido el día 20 de Septiembre Matemáticos nacidos este día: 1674 : Manfredi1842 : Brill1861 : Cole1874 : Mihály Bauer1887 :...
  • Matemáticos del día
    La prueba final de una teoría es que sea capaz de resolver los problemas que la originaron T.Dantzig Matemáticos que han nacido o fallecido el día 19 de Septiembre Matemáticos nacidos este día: 1749 : Delambre1790 : Terrot1840 : McClintock1888 : Alexander1889...
  • Matemáticos del día
    Mejor que de nuestro juicio, debemos fiarnos del cálculo algebraico L.Euler Matemáticos que han nacido o fallecido el día 18 de Septiembre Matemáticos nacidos este día: 1752 : Legendre1819 : Foucault1863 : Metzler Matemáticos fallecidos este día: 1783...
  • Matemáticos del día
    Hemos utilizado el término subgrupo subinvariante pues el término subgrupo subnormal puede ser innecesariamente molesto Marshall Hall Jr. Matemáticos que han nacido o fallecido el día 17 de Septiembre Matemáticos nacidos este día: 1743 : Condorcet1826...
  • Matemáticos del día
    A partir de la evidencia intrínseca de su creación,El Gran Arquitecto del Universo comienza ahora a revelársenos como un matemático puro J.Jeans Matemáticos que han nacido o fallecido el día 16 de Septiembre Matemáticos nacidos este día: 1494 : Maurolico1736...