Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

30 abril 2013 2 30 /04 /abril /2013 05:04

La Matemática es la reina de las ciencias y la teoría de números es la reina de las Matemáticas

C.F.Gauss

 Matemáticos que han nacido o fallecido el día 30 de Abril

 

      


Matemáticos nacidos este día:

1773 : Burckhardt
1777 : Gauss
1861 : John Clark
1875 : Archibald Milne
1916 : Shannon

Matemáticos fallecidos este día:

1977 : Fox
1989 : Kothe
2011 : Quillen

 

 

Carl Friedrich Gauss, el principe de los  matemáticos

 

El matemático, astrónomo y físico aleman Carl Friedrich Gauss, llamado " El Principe de las Matemáticas", está considerado como uno de los más grandes matemáticos de todos los tiempos.

Descubrió la orbita Ceres utilizando el método de los mínimos cuadrados. A petición de Von Humbolt, Gauss es el iniciador junto a Weber del estudio del campo magnético terrestre. El gauss es la unidad de inducción magnética

No habiendo publicado más que una parte ínfima de sus descubrimientos,  la posteridad descubrió la profundidad y alcance de su obra unicamente cuando su diario personal , publicado en 1898, fue descubierto y explotado. Entre sus numerosos resultados estaba particularmente orgulloso de su caracterización de los polinomios regulares construibles unicamente con regla y compás (Teorema de Gauss - Wantzel). Pidió que el poligono regular de 17 lados fuese grabado en su tumba. Sus trabajos en teoría de números se encuentran en su libro "Disquisitiones Arithmeticae", se encuentran , entre otras cosas, el lenguaje de congruencias, la primera demostración completa de la ley de reciprocidad cuadrática, la teoría de formas cuadráticas, la demostración de la propiedad enunciada por Fermat según la cual todo entero natural es suma de tres números triangulares.

Junto a Arquímedes y Newton, Gauss es sin duda uno de los tres genios de la historia de las Matemáticas

Hijo de un humilde albañil, Gauss dió señales de ser un genio antes de que cumpliera los tres años. A esa edad aprendió a leer y hacer cálculos aritméticos mentales con tanta habilidad que descubrió un error en los cálculos que hizo su padre para pagar unos sueldos. Ingresó en la escuela primaria antes de que cumpliera los siete años.

Cuando tenía diez años de edad, su maestro solicitó a la clase que encontrará la suma de todos los números comprendidos entre uno y cien. El maestro, pensando que con ello la clase estaría ocupada algún tiempo, quedó asombrado cuando Gauss, levantó en seguida la mano y dio la respuesta correcta. Gauss reveló que encontró la solución usando el álgebra, el maestro se dio cuenta de que el niño era una promesa en las matemáticas.

Cuando tenía doce años, criticó los fundamentos de la geometría euclidiana; a los trece le interesaba las posibilidades de la geometría no euclidiana. A los quince, entendía la convergencia y probó el binomio de Newton. El genio y la precocidad de Gauss llamaron la atención del duque de Brunswick, quien dispuso, cuando el muchacho tenía catorce años, costear tanto su educación secundaria como universitaria. Gauss, a quien también le interesaban los clásicos y los idiomas, pensaba que haría de la filología la obra de su vida, pero las matemáticas resultaron ser una atracción irresistible.

A partir de 1791, el Duque de Brunswic, Carl Wilhelm Ferdinand se encargó de pagar la educación de Gauss. En Febrero de 1792 Gauss ingresó en el colegio Carolino, donde estudió durante tres años, conociendo la obra de Euler, Lagrange y, sobre todo, los Principia de Newton. Cuando dejó el colegio, en Octubre de 1795, aún no había decidido si se dedicaría a las matemáticas o a la filología. En 1796, un mes antes de cumplir los 19 años, Gauss consiguió la construcción de un polígono regular de 17 lados con regla y compás , como se exigía en la Geometría desde Grecia. Ya de viejo, Gauss encontró la caracterización de los demás polígonos regulares que pueden construirse con regla y compás. Algunos autores consideran este hecho fundamental para que Gauss se decidiera por las matemáticas y no por la filología.

A los 19 años había descubierto por si solo un importante teorema de la teoría de los números, la ley de la reciprocidad cuadrática. Después de su regreso a Brunswic en 1799, el duque tuvo que ser convencido para seguir con su ayuda económica a Gauss. Como contrapartida debió presentar su tesis doctoral en la Universidad de Helmstedt. En su tesis Gauss dio la primera demostración del teorema fundamental del álgebra. Gauss se graduó en Göttinga en 1798, y al año siguiente recibió su doctorado en la Universidad de Helmstedt.

Quizás la obra más importante publicada por Gauss sean las Disquisitiones Arithmeticae de 1801. Aquí desarrolló algunos resultados de teoría de números, incluyendo series infinitas convergentes. Estudió teoría de errores y dedujo la curva normal de probabilidad, hoy conocida como la curva de Gauss.

Las matemáticas no fueron el único tema que le interesó a este hombre; fue también astrónomo, físico, geodesta e inventor. Hablaba con facilidad varios idiomas, e inclusive dominó el ruso a la edad de sesenta años. En 1807 fue nombrado director del observatorio y profesor de astronomía en la Universidad de Göttinga. Cuando tan sólo tenía veinticuatro años, Gauss tuvo una destacada participación en el nacimiento de la astrofísica. La primera noche del siglo XIX aportó un notable caudal a nuestros conocimientos del sistema planetario. El astrónomo italiano Giuseppe Piazzi (1746--1826) descubrió, el 12 de enero de 1801, un astro de octava magnitud que cambió de lugar con respecto a las estrellas fijas, manifestando su carácter planetario. Fue llamado Ceres y se trataba del primero de los asteroides, el primero de los pequeños planetas cuyo enjambre circula en la ancha zona comprendida entre las órbitas de Marte y Júpiter. Las dificultades para calcular los elementos de la órbita del astro descubierto, que, por aproximarse al Sol, se volvió invisible durante algún tiempo, brindaron a Gauss la oportunidad para aplicar su elegante método de mínimos cuadrados y contribuir así a encontrar de nuevo el planetoide perdido.

El 9 de octubre de 1805, un aumento de su pensión permitió que se casara con Johanna Ostoff. De este feliz matrimonio (Gauss lo considera así en una carta dirigida a su amigo Wolfgang Bolyai), nacieron tres hijos, José , Minna y Luis, el primero de los cuales heredó la capacidad de su padre para los cálculos mentales. Sin embargo 4 años después, con el nacimiento de Luis, su esposa murió. Al año se volvió a casar con Minna Waldeck, amiga íntima de su primera mujer, con la que tuvo dos hijos y una hija.

En 1807, fue nombrado director del observatorio de Göttingen con la única obligación, si fuera necesario, de dar cursos de matemáticas a los estudiantes de la universidad. La enseñanza no fue una tarea que agradara a Gauss, solamente con buenos matemáticos se sentía cómodo impartiendo sus lecciones. En esta época debió soportar la presión de los invasores franceses y pagar una contribución involuntaria de 2000 francos a la caja de guerra de Napoleón (su orgullo no le permitió aceptar algunas donaciones para poder pagar esta multa).

Desde 1821 hasta 1848 Gauss trabajó en Geodesia. Entre 1830 y 1840 se dedicó a la física matemática, concretamente electromagnetismo, magnetismo terrestre la teoría de la atracción según la ley de Newton. Los últimos años de su vida, entre 1841 y 1855, los dedicó al "análisis situs" y a la geometría asociada a funciones de variable compleja.

En 1833, inventó un telégrafo eléctrico que usó entre su casa y el observatorio, a una distancia de unos dos kilómetros. Inventó también un magnetómetro bifiliar para medir el magnetismo y, con Weber, proyectó y construyó un observatorio no magnético.

Después de 20 años en los que a penas había salido de Göttingen, en junio de 1854 salió para visitar la construcción del ferrocarril entre su ciudad y Cassel. Los caballos se desbocaron y fue despedido fuera del carruaje, aunque no tuvo ningún daño, si sufrió un fuerte "shock". Después de recuperarse llegó a presenciar la inauguración del ferrocarril a Göttingen. A principios de 1855 comenzaron a aparecer los síntomas de su última enfermedad. Con dificultades, siguió trabajando hasta que murió pacíficamente el 23 de febrero de 1855.

A la edad de setenta y siete años, Gauss falleció. En la lápida que señala su tumba hay un diagrama, construido por el mismo Gauss, de un polígono de diecisiete lados. Durante su vida, se reconoció que era el matemático más grande de los siglos XVIII y XIX. Fue llamado el príncipe de las matemáticas.

 

 

 

Claude Elwood Shannon y la teoría de la información

El matemático e ingeniero americano Claude Elwood Shannon es uno de los padres, si es que no es padre fundador, de la teoría de la información.

Ha dejado su nombre a la unidad de medida Shannon (equivalente a 1 bit), a la relación de Shannon, a la entropía en el sentido de Shannon.

  Diseñó ordenadores, autómatas y robots, como su famoso ratón Teseo, capaz de encontrar, por sí sólo, la salida de un laberinto. Dentro de su leyenda de sabio excéntrico, era un apasionado del malabarismo. Hasta tal punto le apasionaban los malabares que diseñó máquinas malabaristas basadas en su teorema matemático sobre el tema:

      Teorema del Malabarismo de Shannon:  ( F + D ) H = ( B + D ) N

 

3-ball_Mills_messEl Teorema  esta esquemáticamente representado en el caso de las cascadas con tres bolas. En la ecuación, F es el tiempo que la bola pasa por el aire, D el que pasa en la mano, B el tiempo que la mano está vacía, N es el número de bolas, y H el número de manos.

Era famoso en los laboratorios Bell por montar en monociclo realizando equilibrios por los pasillos. 

 

 

 

 

 

Quillen

El matemático americano Daniel Grey Quillen recibió el grado de Doctor por una tesis sobre ecuaciones diferenciales parciales en 1964 titulada Propiedades formales de sistemas sobre-determinados de ecuaciones diferenciales parciales Lineales.

En los años 60, Quillen describió como definir la homología de los objetos simpliciales de muchas categorías diferentes, incluyendo conjuntos, algebras sobre un anillo y algebras inestables sobre el álgebra de Steenrod.

Frank Adams había formulado una conjetura en la teoría homotópica sobre la cual Quillen trabajó. Quillen se aproximó a la conjetura Adams con dos aproximaciones muy diferentes, principalmente usando técnicas de geometría algebraica y también usando técnicas de la teoría de representación modular de grupos. Ambas aproximaciones probaron ser exitosas: la prueba en la primera aproximación se completo por uno de los estudiantes de Quillen; la segunda llevó a una prueba a Quillen.

Las técnicas que involucran la teoría de representación modular de grupos fueron usadas por Quillen con gran efecto en un trabajo posterior de cohomología de grupos y teoría K algebraica. El trabajo en cohomología llevó a Quillen a dar un teorema de estructura para anillos de cohomología de módulo p de grupos finitos, este teorema de estructura resolvió varias preguntas abiertas en el área.

Quillen recibió la Medalla Fields en el Congreso Internacional de Matemáticas llevado a cabo en Helsinki en 1978. Recibió el premio como el arquitecto principal de la teoría K algebraica avanzada en 1972, una nueva herramienta que exitosamente usó métodos e ideas geométricos y topológicos para formular y resolver problemas importantes del álgebra, particularmente de la teoría de anillos y la teoría de módulos.

La teoría algebraica K es una extensión a los anillos conmutativos de las ideas de Grothendieck. Estas ideas fueron usadas por Atiyah y Hirzenbruch cuando crearon la Teoría K topológica

 El talento matemático tiende a expresarse ya sea resolviendo problemas o construyendo teorías. Solamente en casos especiales como el de Quillen uno tiene la satisfacción de ver problemas duros y concretos resueltos con ideas generales de gran fuerza y ámbito y por la unificación de métodos de diversos campos de las matemáticas. Quillen ha tenido un profundo impacto en las percepciones y en los mismos hábitos de pensamiento de toda una generación de algebristas y topólogos jóvenes. Uno estudia su trabajo no solo para informarse, si no también para edificarse.

Köthe

El matemático austriaco Gottfried Maria Hugo Köthe comenzó a estudiar química, pero cambió a la matemática un año más tarde después de reunirse con el filósofo Alfred Kastil 

En 1927 presentó su tesis Beiträge zu der Finslers Grundlegung Mengenlehre ("Contribuciones a Finsler los fundamentos de la teoría de conjuntos"). Después de pasar un año en Zürich trabajando con Paul Finsler , Köthe recibió una beca para visitar la Universidad de Gotinga , donde asistió a las conferencias de Emmy Noether y Bartel van der Waerden sobre el tema emergente de la álgebra abstracta. Comenzó a trabajar en la teoría de anillos y en 1930 publicó la conjetura Köthe indicando que la suma de dos ideales por la izquierda nil en un anillo arbitrario es un ideal nil. Por recomendación de Emmy Noether, fue nombrado asistente de Otto Toeplitz en la Universidad de Bonn entre 1929-1930. Durante este tiempo comenzó la transición hacia el análisis funcional. 

Durante la Segunda Guerra Mundial trabajó en codificación. 

La obra más conocida Köthe, opologische lineare Räume, es sobre teoría de los espacios vectoriales topológicos. También trabajó en teoría de retículos

Recibió el premio Heidelberg de la Academia de Ciencias (1960)y la medalla Gauss (1963)

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Matemáticos del día
Comenta este artículo

Comentarios

Artículos Recientes

  • Matemáticos del día
    Siempre que puedas ,cuenta F.Galton Matemáticos que han nacido o fallecido el día 23 de Agosto Matemáticos nacidos este día: 1683 : Poleni1778 : Wronski1797 : Saint-Venant1829 : Moritz Cantor1842 : Reynolds 1873 : Geocze1893 : Ritt1908 : Todd1909 : David1919...
  • Matemáticos del día
    La ciencia sin la religión es plana. La religión sin la ciencia es ciega A.Einstein Matemáticos que han nacido o fallecido el día 22 de Agosto Matemáticos nacidos este día: 1647 : Papin 1860 : John Pullar 1923 : Yamabe 1927 : Leopoldt 1931 : Alan Mercer...
  • Matemáticos del día
    Los hombres pasan pero sus obras quedan A.L.Cauchy Matemáticos que han nacido o fallecido el día 21 de Agosto Matemáticos nacidos este día: 1789 : Cauchy1860 : Alexander Morgan1881 : Archibald Richardson1901 : Copson 1905 : Alexander Doniphan Wallace1909...
  • Matemáticos del día
    El que no conoce la Matemática muere sin conocer la verdad científica Schelbach Matemáticos que han nacido o fallecido el día 20 de Agosto Matemáticos nacidos este día: 1645 : Siguenza1710 : Simpson1862 : Stäckel1863 : Corrado Segre1898 : Infeld1899 :...
  • Matemáticos del día
    No es cierto que todo sea incierto B.Pascal Matemáticos que han nacido o fallecido el día 19 de Agosto Matemáticos nacidos este día: 1584 : Vernier1646 : Flamsteed1736 : Bring1739 : Klügel1924 : Aubert1939 : Alan Baker Matemáticos fallecidos este día:...
  • Matemáticos del día
    Nada procede del azar, sino de la razón y la necesidad Leucipo Matemáticos que han nacido o fallecido el día 18 de Agosto Matemáticos nacidos este día: 1685 : Taylor1832 : Rouché1861 : Greenstreet1910 : Turán1936 : Kovacs1941 : Domokos Szász Matemáticos...
  • Matemáticos del día
    Y quizá la posteridad me agradecerá el haber demostrado que los antiguos no lo sabían todo P.Fermat Matemáticos que han nacido o fallecido el día 17 de Agosto Matemáticos nacidos este día: 1601 : Fermat1904 : Giovanni Ricci1904 : Levitzki1954 : Daubechies...
  • Matemáticos del día
    Reconozco al león por sus garras J. Bernouilli Matemáticos que han nacido o fallecido el día 16 de Agosto Matemáticos nacidos este día: 1744 : Mechain1773 : Francoeur1821 : Cayley1837 : Tilly1842 : Rosanes1852 : Graf1870 : Frank Jackson1888 : Rey Pastor1905...