Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

21 agosto 2015 5 21 /08 /agosto /2015 05:31

Los hombres pasan pero sus obras quedan

A.L.Cauchy

 Matemáticos que han nacido o fallecido el día 21 de Agosto

      

Matemáticos nacidos este día:

1789 : Cauchy
1860 : Alexander Morgan
1881 : Archibald Richardson
1901 : Copson
1905 : Alexander Doniphan Wallace
1909 : Bogolyubov
1932 : Branges
1934 : Paul-André Meyer
1940 : Szemeredi

Matemáticos fallecidos este día:

1757 : Samuel König
1771 : Fontaine des Bertins
1836 : Navier
1927 : Burnside
1933 : Lichtenstein
1961 : MacDuffee
1972 : Gwilt
1974 : Milne-Thomson
1995 : Chandrasekhar
2006 : Lob
2012 : Thurston
  • Hoy es el ducentésimo trigésimo tercer día del año.
  • 233 es el único número primo de tres cifras que es de Fibonacci.
  • Hay 233 grafos planos con 10 vértices y 233 espacios topológicos conectados con 4 puntos.
  • 233 es el último día del año que es solución de la ecuación de Markov x2+y2+z2=3xyz.
  • 233 es un número deficiente pues la suma  de sus divisores propios es menor que él.
  • 233 es un número libre de cuadrados pues no se repite ningún factor en su descomposición factorial

Cauchy

El matemático francés Augustin Louis Cauchy está considerado como uno de los más grandes matemáticos despues de Euler. Amigo de LagrangeLegendre Laplace.

Se dio a conocer muy joven con la elegente demostración de la fórmula de Descartes - Euler: V-A+F=2

Fue uno de los matemáticos más prolíficos, sus investigaciones abarcan todas las matemáticas de la época. En análisis, se le debe la introducción de las funciones holomorfas y los criterios de convergencia de series y series enteras.

Sus trabajos sobre permutaciones fueron precursores de la teoría de grupos.

Gracias a Cauchy, el análisis infinitesimal adquiere bases sólidas. Empezando con su Analyse Algébrique de 1822, que lo escribió como texto de sus alumnos de la École Polytechnique. Con Cauchy se precisan los conceptos de función, de límite y de continuidad en la forma actual o casi actual, tomando el concepto de límite como punto de partida del análisis y eliminando de la idea de función toda referencia a una expresión formal, algebraica o no, para fundarla sobre la noción de correspondencia. Los conceptos aritméticos otorgan ahora rigor a los fundamentos del análisis, hasta entonces apoyados en una intuición geométrica que quedará eliminada, en especial cuando más tarde sufre un rudo golpe al demostrarse que hay funciones continuas sin derivadas, es decir: curvas sin tangentes.

König

El físico, filósofo y jurista Samuel König, amigo de Voltaire, fue alumno de Jean Bernouilli, del barón de Wolf y de Leibniz. Sus investigaciones versan sobre mecánica y cálculo de probabilidades

Fue adversario de Maupertuis a propósito del principio de mínima acción, que atribuía a Leibniz.

En matemáticas su nombre va asociado al cálculo de la varianza de una serie estadísitca

Fontaine des Bertins

El matemático francés Alexis Fontaine des Bertins, amigo de ClairautMaupertuis,  llevó una vida solitaria mostrando poco interés por los trabajos de los demás. Sus artículos son bastante confusos pero contienen ideas originales en cálculo de variaciones, ecuaciones diferenciales y teoría de ecuaciones.

Da una solución al problema de la braquistocrona. Asimismo da una solución de la tautocrona mas general que las dadas por Huygens,NewtonEuler o Bernouilli.

Criticó injustamente el método de variaciones presentado porLagrange en 1772.

Henri Navier

El ingeniero, matemáticos y científico francés Claude Louis Marie Henri Navier, fue discípulo de Fourier y  especialista en matemáticas aplicadas a la  ingeniería, mecánica de fluidos y elasticidad. Estableció en 1821 y 1822 las ecuaciones de Navier -Stokes, ecuaciones en derivadas parciales no lineales que describen el movimiento de los fluidos en medios continuos.

Estas ecuaciones son tan importantes y deficiles de resolver que el Instituto Clay las ha incluido como uno de los siete problemas del milenio

Burnside

El matemático inglés Willians Burnside tuvo entre sus profesores a StokesAdans y Maxwell en matemáticas aplicadas y a Cayley en matemáticas puras, los cuales inluyeron en sus investigaciones futuras.

Burnside fue elegido miembro de la Royal Society en 1893, por su trabajo en hidromecánica y teoría de funciones complejas. Sin embargo, fue en 1893 cuando publicó su primer artículo sobre teoría de grupos finitos simples, mostrando que el grupo alternado A5 es el único grupo simple finito cuyo orden es el producto de 4 primos (no necesariamente distintos). Fue el primero de una serie dedicada a determinar, para un orden concreto dado, si existe algún grupo simple de ese tamaño. En 1895, probó que si un grupo de orden par tiene un 2-subgrupo de Sylow cíclico entonces no puede ser simple. Su trabajo sobre teoría de grupos progresó rapidamente y en 1897 publicó su libro The Theory of Groups of Finite Order, el primero sobre teoría de grupos en inglés. Ese libro tuvo una gran influencia sobre el desarrollo de la teoría de grupos.

La contribución de Burnside a la teoría de grupos ha sido importante.Frobenius comenzó su desarrollo de la teoría de representación de grupos y teoría de caracteres en 1896. Burnside rápidamente reconoció la importancia de los métodos de Frobenius y empezó a usar la teoría de caracteres. Uno de sus resultados mas importantes, que los grupos de orden p^mq^n son resolubles, lo publicó en 1904. Casos especiales de este resultado habían sido probados por Sylow (el caso n = 0 en 1872), Frobenius (el caso n = 1 en 1895) y Jordan(el caso n = 2 in 1898).

Burnside conjeturó que todo grupo finito de orden impar es resoluble y no sorprende que fallara en su intento de demostrarlo ya que no fue probado hasta 1962 cuando W. Feit y J. C. Thompson probaron el resultado en un artículo de 300 páginas. Mucho de la teoría de grupos actual se mueve todavía en la dirección que marcó Burnside. Su famoso problema de Burnside, sobre la finitud de los grupos cuyos elementos tienen orden finito fijo es todavía un área de investigación en teoría de grupos. De hecho en 1994, el medalla Fields Efin Zelmanov fue premiado por resolver la conjetura restringida de Burnside.

Thurston

El matemático estadounidense William Paul Thurston es un pionero en el campo de la topología geométrica. En 1982 la Unión Matemática Internacional le concedió la Medalla Fields por la profundidad y originalidad de sus contribuciones a la matemática.

Se doctoró en la Universidad de California, Berkeley en 1972. Consiguió su Ph.D. con una disertación titulada Foliations of Three-Manifolds which are Circle Bundles. En 1974 se convierte en profesor de la Universidad de Princeton. También ha sido profesor en Berkeley, en UC Davis y en la Universidad de Cornell.

En 1997 publicó la geometría tridimensional y topología. Vol. 1 . 

  Thurston revolucionó la comprensión de la estructura de los espacios tridimensionales y ganó la medalla Fields, a menudo considerada como el equivalente del premio Nobel de las matemáticas. William P. Thurston falleció en Rochester, a los 65 años, a causa de un cáncer. Sus campos de investigación fueron la geometría y la topología, el estudio de las diferentes formas posibles en espacios multidimensionales.

Su mayor logro fue su conjetura de geometrización, que postula que todos los posibles espacios tridimensionales se componen de ocho tipos de piezas geométricas, un descubrimiento que comparó con la búsqueda de ocho equipaciones que pudieran ajustarse a cualquier persona en el mundo.

Durante la mayor parte de su vida profesional, Thurston perteneció a un grupo extraño para su campo, dedicándose a profundas reflexiones teóricas que no tenían a priori ninguna aplicación práctica determinada.

"No lo hago por el resultado final. La fuerza interior que impulsa a los matemáticos no es la búsqueda de aplicaciones, sino comprender la estructura y la belleza interior de las matemáticas mismas", decía.

John Milnor, codirector del Instituto de Ciencias Matemáticas de la Universidad de Stony Brook en Long Island, reconoció que las teorías de Thurston habían aportado luz "en la manera en que vemos muchos problemas". Sin el trabajo de Thurston, por ejemplo, el matemático ruso Grisha Perelman no habría podido en el 2003 resolver la conjetura de Poincaré, un problema que había desafiado a los matemáticos durante 100 años. Además, muchos cosmólogos han basado en los descubrimientos de Thurston sus estudios sobre la forma del universo. Sus colegas recuerdan que amaba más que nada sentarse en una sala común y ayudar a otros matemáticos o a estudiantes con una lluvia de ideas sobre las soluciones a los problemas en los que estuvieran trabajando.

En persona dicen que Thurston dejaba a todos boquiabiertos por su conocimiento enciclopédico de geometría y topología diferencial, pero sus trabajos matemáticos fueron muy criticados por su falta aparente de rigor (por cierto, muy al estilo del trabajo de Perelman). La demostración de Thurston de 1982 para variedades de curvatura negativa contenía varios “agujeros” que Thurston no se molestó en rellenar, pues opinaba que su “esquema” de demostración era una demostración en toda regla, opinión contraria a la de muchos expertos. Finalmente, se rellenaron los “agujeros” en dos trabajos de otros autores en 1999 y 2000

Chandrasekhar

El físico, astrofísico y matemático indio Subrahmanyan Chandrasekhar era hijo de un padre funcionario y musicólogo y una madre gran conocedora de literatura y ligüística. Sin embargo, él prefirió seguir la senda de su tío, el físico sir Chandrasekhar Venkata Raman. En un principio, Chandra (como siempre se le llamó), fue educado en su casa por sus padres y tutores. En 1922 pasó a la escuela hindú de Madrás y más tarde ingresó en la universidad de esta localidad para estudiar física teórica.

En 1930 obtuvo una beca para doctorarse en la Universidad de Cambridge. El largo viaje por mar desde su tierra a Inglaterra lo aprovechó en la lectura del libro de Arthur Eddington La constitución interna de las estrellas, en el que el astrónomo británico mantenía que todas las estrellas, una vez que han agotado el combustible que mantiene sus reacciones nucleares, se colapsan bajo su propio peso, irradiando el exceso de energía en el espacio. Precisamente, sus primeros trabajos en el Trinity College, bajo la dirección del físico Ralph Howard Fowler, estuvieron en abierta contradicción con las tesis de Eddington.

En 1933, una vez doctorado, permaneció en Cambridge como profesor del Trinity College. Sin embargo, en 1935 su prestigio sufrió un serio retroceso. Invitado a exponer sus teorías en la Royal Astronomical Society, se encontró allí con Eddington, figura de gran prestigio, que leyó un trabajo que era una refutación implacable de las teorías sobre los agujeros negros de Chandrasekhar. Posiblemente, este episodio le decidió para su posterior traslado a Estados Unidos. Sin embargo, ambos científicos hicieron las paces más tarde y Eddington apoyó su elección para la Royal Society en 1944.

En 1936 volvió a la India, donde contrajo matrimonio con una colega también dedicada a la física, Lalitha, quien le sobrevive. Ese mismo año se trasladó a la Universidad de Chicago. En 1939 publicó An introduction to the study of stellar structure, una magistral síntesis de la astrofísica estelar de ese momento. En 1953 adquirió la nacionalidad estadounidense, aunque siempre mantuvo una gran fidelidad a su país de origen. En Chicago, Chandrasekhar alternó su dedicación a la enseñanza con a la investigación de la estructura y la dinámica estelar y, más adelante, de la teoría general de la relativad y la astrofísica relativista, desarrollando una teoría matemática de los agujeros negros.

En 1983 obtuvo el Premio Nobel de Física, compartido con William Fowler. En 1989 visitó España y expuso sus teorías en la Universidad de Barcelona. Según explicó, la existencia de los agujeros negros -fase final de la evolución de algunas estrellas que constituyen un foco de atracción gravitatoria y de los que nada, ni siquiera la luz puede salir- fue predicha hace ya 200 años y está claro que si una estrella se contrae hasta cierto tamaño, no tiene más remedio que convertirse en una de esas singularidades. Para predecir su existencia, igual que antes predijo otros estados evolutivos estelares como las enanas blancas, las estrellas de neutrones y púlsares y las supernovas, Chandrasekhar se basó en dos teorías irreconciliables: la relatividad general y la mecánica cuántica. Sin embargo, el hecho de que aún no se hayan podido conjugar ambas teorías no parecía preocuparle, ya que él pensaba que la teoría de la relatividad general tiene muchos efectos sin estudiar todavía. 

Entre sus publicaciones se cuentan: Principles of stellar dinamics (1942), Ellipsoidal figures of equilibrium (1969) y The mathematical theory of black holes (1983)

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Matemáticos del día
Comenta este artículo

Comentarios

Artículos Recientes

  • Matemáticos del día
    Una tesis doctoral es un trabajo escrito en circunstancias agravantes. A.Hurwitz Matemáticos que han nacido o fallecido el día 18 de Noviembre Matemáticos nacidos este día: 1844 : Wangerin 1872 : Vacca1912 : Sasaki1913 : Faedo1916 : Bates1924 : Lucien...
  • Matemáticos del día
    El milagro de la adecuación del lenguaje de la matemática a la formulación de las leyes físicas es un don maravilloso que ni entendemos ni merecemos. E.Wigner Matemáticos que han nacido o fallecido el día 17 de Noviembre Matemáticos nacidos este día:...
  • Matemáticos del día
    No os fiéis de las brujerías y atractivos diabólicos de las matemáticos. F.Fénelon Matemáticos que han nacido o fallecido el día 16 de Noviembre Matemáticos nacidos este día: 1823 : Amsler1835 : Beltrami1886 : Marcel Riesz1897 : Shtokalo Matemáticos fallecidos...
  • El comunismo de los matemático
    El sociólogo de la ciencia Robert K. Merton sostenía que los ideales de cualquier comunidad científica deberían ser: el escepticismo organizado o la presunción de falsedad (toda idea es falsa hasta que se demuestre lo contrario), el universalismo (la...
  • Matemáticos del día
    Donde haya materia existe geometría. J.Kepler Matemáticos que han nacido o fallecido el día 15 de Noviembre Matemáticos nacidos este día: 1688 : Castel1793 : Chasles1794 : Taurinus1894 : Suslin1900 : Redei1907 : Marczewski1942 : Crighton Matemáticos fallecidos...
  • Matemáticos del día
    La Matemática honra el espíritu humano. G.Leibniz Matemáticos que han nacido o fallecido el día 14 de Noviembre Matemáticos nacidos este día: 1845 : Dini1865 : Bagnera1882 : Robert Moore1896 : Bertram Wilson1916 : Apery1919 : Libermann Matemáticos fallecidos...
  • Matemáticos del día
    Las matemáticas son el único material de enseñanza que se puede presentar de una manera totalmente dogmática. M.Dehn Matemáticos que han nacido o fallecido el día 13 de Noviembre Matemáticos nacidos este día: 1786 : James Thomson 1876 : Wilczynski1878...
  • Matemáticos del día
    Los ejemplos ... que pueden ser multiplicados add libitum, muestran cuán difícil es muchas veces para un experimentador interpretar sus resultados sin la ayuda de las matemáticas H.Whitehead Matemáticos que han nacido o fallecido el día 12 de Noviembre...