Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

14 enero 2017 6 14 /01 /enero /2017 06:14

Abel ha dejado ideas suficientes para mantener ocupados a los matemáticos los próximos cinco siglos

C.Hermite

 Matemáticos que han nacido o fallecido el día 14 de Enero

 

Matemáticos nacidos este día:

1819 : Cockle
1887 : Steinhaus
1902 : Tarski
1924 : Reizins

 

Matemáticos fallecidos este día:

1679 : Billy
1687 : Nicolaus Mercator
1742 : Halley
1753 : Berkeley
1814 : Bossut
1898 : Dodgson
1901 : Hermite
1905 : Abbe
1912 : Droz-Farny
1914 : Benjamin Osgood Peirce
1931 : Johnson
1970 : Feller
1978 : Gödel
2000 : Truesdell

  • Hoy es el décimo cuarto día del año.
  • Hay el mismo número de primos y de compuestos menores de 14.No hay otro número para el que se cumpla.
  • 14 es el menor entero positivo tal que n y 2n terminan en la misma cifra.
  • 14 es un número de Catalán.
  • 14 es un número deficiente pues es mayor que la suma de sus divisores propios.
  • 14 es un número libre de cuadrados pues en su descomposición factorial no se repite ningún factor

Hugo Steinhaus

Władysław Hugo Dionizy Steinhaus es un matemático polaco conocido sobre todo por el Teorema de Banach - Steinhaus (1927)  sobre las familias de aplicaciones lineales continuas. Fue alumno de  Klein y Hilbert

 Su tesis doctoral, Nuevas Aplicaciones del principio de Dirichlet, la realizó bajo la dirección de Hilbert

Fue uno de los fundadores de la escuela de matemáticas de Lwów y escribió más de 170 obras en análisis matemático, teoría de las probabilidades y estadísticas. Es en particular el autor de 100 problemas elementales de matemáticas. 

Con uno de sus alumnos, Banach, fundó la revista Studia Mathematica que dió a conocer las matemáticas polacas en Europa 

Fue Miembro de la Academia de Ciencias polacas y autor del celebrado libro de divulgación " Instantaneas Matemáticas" 

Tarski

El lógico, matemático y filósofo polaco Alfred Tarski nació en el seno de una familia judía y su nombre original fue Alfred Tajtelbaum, nombre que después cambió a Alfred Tarski cuando se convirtió al catolicismo ya que no poseía interés alguno en mantener su cultura judía puesto que por estos años había estallado en el mundo la Segunda Guerra Mundial, y su condición de judío le impedía el acceso a las universidades, el instituto que lo acogió finalmente fue el Instituto Pedagógico, el cual le permitió combinar las clases con la investigación debido a que mantenía el contacto con sus colegas. Antes de su partida de Polonia Tarski es nombrado asistente del prominente matemático polaco Lukasiewicz. A su llegada a los Estados Unidos, Tarski comienza a trabajar y a hacer grandes aportes a las ciencias matemáticas. Trabaja la teoría de conjuntos, lógica polivalente, niveles de lenguaje y metalenguaje y conceptos semánticos.
Fue el autor de Introducción a la lógica y a la metodología de las ciencias deductivas. Junto conAristóteles, Gottlob Frege y Kurt Gödel, Tarski es considerado uno de los lógicos más grandes de todos los tiempos. De los cuatro, Tarski es uno de los mejores matemáticos, el más prolífico y el que desarrollo una actividad educativa más intensa. Entre sus muchos y relevantes discípulos se cuenta Julia Robinson. 
 Tarski contribuyó a la madurez de la lógica estándar —de primer orden— fundando una metodología conjuntista de las teorías deductivas sobre dos bases: 1.-la noción de teoría como conjunto de proposiciones cerrado bajo una noción de derivación mediante aplicación de reglas, y 2.- el desarrollo de una semántica basada en las nociones de satisfacción, verdad y consecuencia lógica. Sus métodos semánticos —que culminaron en la teoría de modelos desarrollada en los años 50 y 60 junto a sus discípulos de Berkeley— transformaron radicalmente la metamatemática, consolidándola como ciencia estricta. La idea principal es reemplazar los símbolos de una cierta teoría por expresiones de otra teoría de forma que los axiomas de la primera se traduzcan en teoremas de la otra. La teoría de modelos estudia las propiedades que se heredan de unas teorías a otras a lo largo de estas traducciones, y compara los alcances respectivos de teorías diversas. Suya es una de las primeras demostraciones del teorema de deducción, con importantes aplicaciones tanto en lógica como en metalógica.

Halley

Edmond Halley fue un célebre astrónomo inglés autor de una teoría sobre cometas (1705) donde predijo el regreso en 1758 de un cometa con trayectoria elíptica observado por Kepler en 1607, aplicando las leyes de la mecánica celeste de Newton. En su honor se dio al cometa su nombre y que hoy día se le conoce como 1P/Halley.

Desde muy joven sintió una gran inclinación por las matemáticas y se interesó en la investigación de los cielos a través del astrónomo real, John Flamsteed

Amigo de Isaac Newton (1642-1727), le animó a escribir su "Principia Mathematica". Es posible que en la época de Newton no se hubieran publicado, de no haber sido por su amistad con Halley, pues se sabe que al primero no le preocupaba la publicación de su obra. Halley no solo pagó la impresión sino que se encargó de corregir pruebas y de otras labores editoriales. El libro original se vendió a las librerías por seis chelines, sin encuadernar.

De 1698 a 1700 recorrió las costas de África austral y de América, ocupado en la teoría del magnetismo terrestre en el barco "Paramore". El fruto más importante de estas dos expediciones fue la primera carta de la variación de la declinación magnética , con las curvas isogonas

Además de su trabajo sobre los cometas, Halley también estudió el clima, el magnetismo, y las mareas oceánicas de la Tierra.

  Hermite

El matemático francés Charles Hermite, apasionado de las Matemáticas, tuvo dificultades para aprobar las materias ordinarias. Fue profesor de la Escuela Politécnica de París ( 1848 ), del Colegio de Francia ( 1848 ), de la Escuela Normal ( 1869 ) y de la Sorbona ( 1870 ), donde tuvo entre sus alumnos a Poincaré

Niels Henrik Abel había demostrado que la ecuación de quinto grado no se puede resolver por métodos algebraicos, pero Hermite la resolvió mediante funciones elípticas en su artículo con título " Sur la résolution de l´équation du cinquième degré " ( Sobre la resolución de la ecuación de quinto grado, 1858 ).

En 1783, demostró que el número e, base de los logaritmos neperianos, es un número trascendente ( no es la raíz de ninguna ecuación algebraica de coeficientes racionales ). Resolviendo ciertos problemas de teoría de números, Hermite inventó las formas y matrices hermíticas, que luego tuvieron aplicación a la Mecánica cuántica de Heisenberg. Curiosamente, otro de sus descubrimientos, las funciones y polinomios de Hermite, se aplican a la otra formulación de la Mecánica cuántica, la de Schrödinger.. Varias entidades matemáticas se llaman hermitianas en su honor. También es conocido por la interpolación polinómica de Hermite.

Como hemos dicho fue el primero que demostró que e es un número trascendente y no la raíz de una ecuación algebraica o polinómica con coeficientes racionales. Ferdinand von Lindemann siguió su método para probar la trascendencia de π (1882).

Fue titular de la cátedra de Álgebra superior en la Facultad de Ciencias de París, sucediendo a Jean-Marie Duhamel de 1871 a 1898, y profesor de Análisis en la École polytechnique de 1869 a 1878.

Charles Hermite entró a formar parte de la Academia de Ciencias Francesa en 1856 en sustitución de Jacques Binet, y pasó a presidirla en 1890.

Le fueron concedidos los honores de Gran Oficial de la Legión de Honor y la Gran Cruz de la Estrella polar de Suecia.

Se casó con la hermana del matemático Joseph Bertrand, y fue suegro del matemático Émile Picard y del ingeniero Georges Forestier.

La mayor parte de sus obras fueron recopiladas y publicadas después de su muerte por Émile Picard.

Su correspondencia con Stieltjes se publicó en 1903.

Abbe

El físico, matemático, astrónomo e industrial alemán Ernst Karl Abbe es conocido por sus contribuciones teóricas de óptica, por el diseño y perfeccionamiento del microscopio fotónico y por haber sido el primero en comprender la importancia de los rayos directos y difractados, así como del efecto deletéreo de las aberraciones de las lentes en la formación de imágenes en el microscopio. Inventó un sistema de lentes apocromáticos para el microscopio, un condensador para la iluminación uniforme de los especímenes y demostró las características necesarias para que un sistema de lentes esté libre de aberraciones. Impulsó mejoras en las condiciones laborales de los trabajadores, revolucionarias para su tiempo. 

Revisten también especial importancia las aportaciones de Ernst Abbe en el campo de la óptica teórica, como la llamada relación de los senos, la cual establece las condiciones que deben satisfacer las lentes de un sistema óptico centrado para generar imágenes nítidas, libres de la aberración esférica. Su obra Base teórica de la construcción de microscopios (1873) representa asimismo un eslabón teórico imprescindible en el proceso que conduciría, a finales de la década de 1920, a la construcción de los primeros microscopios electrónicos.

 Berkeley

 

El filósofo irlandés George Berkeley era profundamente religioso, dedicó su obra a fundar la fe en el discurso racional, a contracorriente del espíritu librepensador de su época, que, con el auge del empirismo, había quedado marcada por un cierto escepticismo. Tras estudiar en Dublín y ordenarse sacerdote, en 1710 escribió su obra fundamental titulada Los principios del conocimiento humano, y en 1734 fue nombrado obispo anglicano de Cloyne (al sur de Irlanda).

Berkeley adoptó desde el principio un inmaterialismo que lo enfrentó a Hobbes y a Locke: según él, afirmar que las cosas existen independientemente de nuestra percepción implica una contradicción, sobre todo desde un empirismo consecuente. En efecto, si no debemos aceptar nada sobre lo que no exista una certeza absoluta, y puesto que de las cosas «sólo conocemos su relación con nuestros sentidos», no lo que son en sí mismas, únicamente podemos aceptar como ciertas las representaciones mentales.

Berkeley inauguró con ello el principio del idealismo, según el cual «el ser» de las cosas es su «ser percibidas», de tal modo que la sustancia no es ya la materia, sino únicamente la sustancia espiritual, de cuya existencia nuestros pensamientos son la prueba irrefutable, de acuerdo con su contemporáneo Descartes. Sin embargo, si los objetos no existen como fundamento de nuestras representaciones mentales, tenía que haber algo existente que, permaneciendo fuera de nuestra mente, suscitase nuestras percepciones, un principio que Berkeley halló en Dios.

Como producto de su radicalización del empirismo, Berkeley tuvo que redefinir el concepto de causa. Así, consideró que las causas físicas no eran verdaderas causas, sino únicamente signos que la ciencia debía interpretar para asegurar la supervivencia. La filosofía de Berkeley tuvo escasa aceptación entre sus contemporáneos, a pesar de sus esfuerzos por hacerla más popular y accesible en Los tres diálogos entre Hylas y Philonus (1713).

En 1734 publicó El analista, una crítica a los fundamentos de la ciencia, que fue muy influyente en el desarrollo de la matemática.

El analista o Un discurso dirigido a un matemático infiel (el «infiel» era Edmund Halley), calificada por Florian Cajori, historiador de las matemáticas, como «el hecho más espectacular del siglo en la historia de las matemáticas británicas».

Después de su critica, salieron en defensa de Newton, entre otros, James Jurin, de Cambridge; John Walton, de Dublin, y Colin Maclaurin, de Escocia. Berkeley respondió a Jurin con una punzante sátira en Una defensa del libre pensamiento en matemáticas (1735); en un apéndice del mismo trabajo le contestó a Walton y lo hace de nuevo en Razones para no contestar...

Charles Dodgson o Lewis Carroll

El escritor, fotógrafo, poeta y matemático británico Lewis Carroll (cuyo verdadero nombre era Charles Lutwidge Dodgson) es conocido por ser el autor de Alicia en el país de las maravillasAl otro lado del espejo, La caza del Snark Silvia y Bruno 

Durante cerca de cuarenta años fue profesor de matemáticas en Oxford, y junto con el también lógico George Boole procedió a una axiomatización de la lógica. Pero, sin duda, lo que le ha hecho universalmente conocido son sus historias para niños, historias donde desplegó todo su talento para jugar —y hacernos reflexionar— con el absurdo, el sinsentido y la magia de algunas paradojas lógicas. Carroll, que también gustaba de fotografiar niñas, y que ha dejado una galería de ambiguos retratos infantiles, es autor de Alicia en el país de las maravillas (1865), A través del espejo (1872), La caza del Snark (1876) 

Feller

William (Vilim) Feller, cuyo nombre original era Vilibald Srećko Feller, fue un matemático estadounidense de origen croata conocido por sus contribuciones a la teoría de la probabilidad.

A lo largo de su carrera escribió 104 artículos y dos libros en temas tan variados como el análisis matemático, la teoría de la medida, el análisis funcional, la geometría y las ecuaciones diferenciales.

Fue uno de los principales probabilistas fuera de la Unión Soviética y contribuyó al estudio de la relación entre las cadenas de Markov y las ecuaciones diferenciales. Su tratado sobre la teoría de la probabilidad (en dos volúmenes) está considerado como una de las referencias básicas en la materia.

Numerosos resultados en teoría de la probabilidad están asociados a él, como los procesos de Feller, el test de explosión de Feller, el movimiento de Feller-Brown y el teorema de Lindberg-Feller. Sus libros han sido fundamentales para la popularización de la teoría de la probabilidad. Realizó contribuciones importantes en la teoría de la renovación, los teoremas tauberianos, paseos aleatorios, procesos de difusión y la ley del logaritmo iterado.

Kurt Gödel

 

     El matemático y lógico austroamericano Kurt Gödel, el lógico más grande desde Aristóteles, según Von Newmann, es celebre por su famoso teorema de incompletitud de Gödel según el cual cualquier sistema lógico suficientemente potente para describir la aritmética de los enteros admite proposiciones que no pueden ser negadas ni confirmadas a partir de los axiomas de las teoría .

Con la excepción de las reflexiones filosóficas sobre la naturaleza del espacio tiempo donde prevé la posibilidad de revisar el pasado, Gödel consagra su carrera a la lógica en el marco de los fundamentos de las matemáticas donde elabora sus teoremas sobre indecibilidad e incompletitud.

Convencido de la existencia de un complot para envenenarlo, dejó de alimentarse.Está considerado como uno de  los  más grandes matemáticos del siglo XX

Gödel compartía con Einstein su genialidad y su oposición a las líneas de pensamiento dominantes en la época. Al igual que la Teoría de la Relatividad demolió la idea de un espacio y un tiempo independientes, absolutos, e inmutables, sus Teoremas de Incompletitud cambiaron el rumbo de la filosofía y las matemáticas, demostrando la inherente inaprehensibilidad del concepto de verdad matemática absoluta y completa. Y al igual que Einstein se alejó de la mayoría de comunidad física al oponerse a la teoría cuántica como modelo final del Cosmos, Gödel hizo lo propio al aferrarse a sus ideas platónicas sobre las matemáticas.

Siendo alguien que se tomaba las cosas realmente en serio, aunque se pudiera tratar de meras formalidades, decidió estudiar en detalle la Constitución de los EE.UU. para su examen de nacionalización. El día antes del mismo llamó a Oskar Morgenstern -brillante matemático de origen alemán, padre de la Teoría de Juegos- muy nervioso; había descubierto una inconsistencia lógica en la Constitución por la que se podía instaurar una dictadura en los EE.UU. Morgenstern intentó calmarle, temeroso de las consecuencias que un comentario sobre eso podría tener sobre sus posibilidades de nacionalizarse. Al día siguiente el propio Morgenstern y Einstein acompañaron a Gödel, intentando distraerle para que olvidara el asunto. El juez Philip Forman, impresionado por el dúo de genios que hacían de padrinos les permitió quedarse durante el examen. En el desarrollo del mismo le pregunto a Gödel “Vd. tenía la nacionalidad alemana hasta ahora, ¿no?” -”Austriaca” le corrigió Gödel; “Es igual” -prosiguió el juez- “aquello fue durante una horrible dictadura, pero afortunadamente eso no puede pasar aquí“; “¡De ninguna manera, yo puedo demostrarle que sí!” afirmó Gödel, que comenzó a explicarle el mecanismo que había descubierto. Afortunadamente, el juez Forman le interrumpió, y Einstein y Morgenstern consiguieron calmar a Gödel, que poco más tarde juraría su nueva nacionalidad. Es aún un misterio qué fue lo que Gödel había descubierto.

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Matemáticos del día
Comenta este artículo

Comentarios

Artículos Recientes

  • Matemáticos del día
    Conocí a un hombre una vez que me dijo que lejos de creer en la raíz cuadrada de menos uno, en lo que no creía era en menos uno. Esto es, en todo caso una actitud coherente Edward Titchmarsh Matemáticos que han nacido o fallecido el día 18 de Enero Matemáticos...
  • Teorema del día
    LEY DE RECIPROCIDAD CUADRÁTICA El primero que ofrece de manera implícita una parte de la primera ley complementaria de la L.R.C. es Diofanto de Alejandría, en su obra Arithmetica. Luego, Fermat motivado por este libro encuentra parte esencial de la primera...
  • Matemáticos del día
    Siempre que puedas, cuenta F.Galton Matemáticos que han nacido o fallecido el día 17 de Enero Matemáticos nacidos este día: 1647 : Elisabetha Koopman 1706 : Benjamin Franklin1847 : Zhukovsky1858 : Koenigs1868 : Couturat1889 : Fowler1900 : Collingwood1905...
  • Matemáticos del día
    No tengo ni idea. Pero sé que, sin matemáticas, nunca lo descubriremos I.Stewart Matemáticos que han nacido o fallecido el día 16 de Enero Matemáticos nacidos este día: 1801 : Clausen 1877 : Gronwall1885 : Plancherel1906 : Kahler1920 : Boone1925 : Dahlquist...
  • Matemáticos del día
    Di lo que sepas, haz lo que debas, pase lo que pase S.Kovalevsskaya Matemáticos que han nacido o fallecido el día 15 de Enero Matemáticos nacidos este día: 1648 : Aldrich1708 : Castillon1717 : Stewart1814 : Schläfli1850 : Kovalevskaya 1876 : Robert J...
  • Matemáticos del día
    Abel ha dejado ideas suficientes para mantener ocupados a los matemáticos los próximos cinco siglos C.Hermite Matemáticos que han nacido o fallecido el día 14 de Enero Matemáticos nacidos este día: 1819 : Cockle1887 : Steinhaus1902 : Tarski1924 : Reizins...
  • Error de cálculo en el cuadrilátero
  • Matemáticos del día
    Nada procede del azar, sino de la razón y la necesidad Leucipo Matemáticos que han nacido o fallecido el día 13 de Enero Matemáticos nacidos este día: 1845 : Tisserand1864 : Wien 1868 : McIntosh1876 : Eisenhart1876 : Schmidt1900 : Cox1902 : Menger1931...