Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

27 diciembre 2016 2 27 /12 /diciembre /2016 09:31

TEOREMA DE LINDEMANN - WEIERSTRASS

 

El teorema de Lindemann–Weierstrass es un resultado muy útil para establecer la trascendencia de un número. Afirma que si α1, α2, ...,αn son números algebraicos linealmente independientes sobre el cuerpo de los números racionales Q , entonces eα1,eα2 ,...eαn son algebraicamente independientes sobre Q; es decir, el grado de trascendencia de la extensión del cuerpo Q(eα1,eα2 ,...eαn ) sobre Q es n.

Tras la  demostración de Charles Hermite de 1873 de la trascendencia de e, Lindemann probó  que

e+1=0 implica la trascendencia de pi. Lindemann demostró en 1882 que eα es trascendente para todo α algebraico no nulo, y de este modo estableció que π es transcendente. Weierstrass demostró la forma más general de este teorema en 1885.

El teorema anterior junto con el Teorema de Gelfond-Schneider, está generalizado por conjetura de Schanuel.

 

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Tema del día
Comenta este artículo

Comentarios

Artículos Recientes

  • Premio Abel 2017
    La Academia Noruega de Ciencias y Letras ha resuelto otorgar el Premio Abel 2017 a Yves Meyer (77) de la École normale supérieure Paris-Saclay, Francia, «por su papel clave en el desarrollo de la teoría matemática de las ondículas». El pasado 21 de marzo...
  • Matemáticos del día
    La matemática universal... es la lógica de la imaginación Leibniz Matemáticos que han nacido o fallecido el día 23 de Marzo Matemáticos nacidos este día: 1749 : Laplace1754 : Vega 1795 : Holmboe1862 : Study1882 : Emmy Noether 1897 : Synge1907 : Whitney...
  • Matemáticos del día
    5as matemáticas son un lenguaje, hecho para seducir más que para decir Mandelbrot Matemáticos que han nacido o fallecido el día 22 de Marzo Matemáticos nacidos este día: 1891 : Swain1917 : Kaplansky1920 : Los1926 : Babuska1940 : Szafraniec1944 : Millington...
  • Matemáticos del día
    Ha de saber las matemáticas, porque a cada paso se le ofrecerá tener necesidad dellas Cervantes Matemáticos que han nacido o fallecido el día 21 de Marzo Matemáticos nacidos este día: 1768 : Fourier1831 : Beale1863 : Watt1884 : Birkhoff 1920 : Hammersley...
  • Teorema del día
    EL TEOREMA DE IMPOSIBILIDAD DE ARROW (1950): No existe ningún método “razonable” para decidir cuál de entre 3 o más opciones prefiere un grupo de personas. Dicho de otra manera. El único método para deducir la preferencia del grupo a partir de las preferencias...
  • Matemáticos del día
    Los hombres sabios discuten los problemas, los necios los deciden Anacarsis Matemáticos que han nacido o fallecido el día 20 de Marzo Matemáticos nacidos este día: 1840 : Mertens1884 : Frank1895 : Kaczmarz1938 : Sergi Novikov Matemáticos fallecidos este...
  • Matemáticos del día
    Si Dios me hubiera consultado sobre el sistema del Universo, le habría dado unas cuantas ideas Alfonso X El Sabio Matemáticos que han nacido o fallecido el día 19 de Marzo Matemáticos nacidos este día: 1862 : Kneser1910 : Wolfowitz Matemáticos fallecidos...
  • Matemáticos del día
    La ciencia, por el camino de la exactitud, solo tiene dos ojos: La Matemática y la Lógica A. De Morgan Matemáticos que han nacido o fallecido el día 18 de Marzo Matemáticos nacidos este día: 1602 : Billy1640 : La Hire1690 : Goldbach1796 : Steiner1839...