Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

2 septiembre 2013 1 02 /09 /septiembre /2013 06:15

Conjetura de Singmaster

Existe un número M tal que ningún número entero positivo aparece más de M veces en el triángulo de Pascal.

Algunos creen que dicha cota será precisamente 8 (el número de veces que sale el 3003), aunque el propio Singmaster piensa que la cota será 10 ó 12. Hasta que no llegue alguien que le ponga el cascabel al gato seguiremos con la incertidumbre (y no parece que esto sea fácil, al menos el gran Paul Erdös así lo pensaba, aunque también creía que la conjetura es cierta)

La conjetura de Singmaster, cuyo nombre se debe al profesor de matemáticas estadounidense David Singmaster, está relacionada con el número de veces que puede aparecer un número distinto de 1 en el triángulo de Pascal.

En un triángulo de Pascal infinito, a excepción del 1 (que aparece infinitas veces) cualquier número entero positivo aparece un número finito de veces. ¿Por qué? Muy sencillo: porque un número entero positivo K solamente puede aparecer en las K primeras filas del triángulo de Pascal (tal y como lo hemos construido), ya que a partir de la fila K+1 todos los números que aparecen en cualquiera de ellas (excepto los unos) son mayores que K. Por ejemplo, el número 6 solamente puede aparecer en las primeras 6 filas, y concretamente aparece 3 veces (una vez en la cuarta fila y dos veces en la sexta).

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Tema del día
Comenta este artículo

Comentarios

Artículos Recientes

  • Matemáticos del día
    No es cierto que todo sea incierto B.Pascal Matemáticos que han nacido o fallecido el día 19 de Agosto Matemáticos nacidos este día: 1584 : Vernier1646 : Flamsteed1736 : Bring1739 : Klügel1924 : Aubert1939 : Alan Baker Matemáticos fallecidos este día:...
  • Matemáticos del día
    Nada procede del azar, sino de la razón y la necesidad Leucipo Matemáticos que han nacido o fallecido el día 18 de Agosto Matemáticos nacidos este día: 1685 : Taylor1832 : Rouché1861 : Greenstreet1910 : Turán1936 : Kovacs1941 : Domokos Szász Matemáticos...
  • Matemáticos del día
    Y quizá la posteridad me agradecerá el haber demostrado que los antiguos no lo sabían todo P.Fermat Matemáticos que han nacido o fallecido el día 17 de Agosto Matemáticos nacidos este día: 1601 : Fermat1904 : Giovanni Ricci1904 : Levitzki1954 : Daubechies...
  • Matemáticos del día
    Reconozco al león por sus garras J. Bernouilli Matemáticos que han nacido o fallecido el día 16 de Agosto Matemáticos nacidos este día: 1744 : Mechain1773 : Francoeur1821 : Cayley1837 : Tilly1842 : Rosanes1852 : Graf1870 : Frank Jackson1888 : Rey Pastor1905...
  • Matemáticos del día
    Dos concepciones aparentemente incompatibles pueden cada una representar un aspecto de la verdad L.Broblie Matemáticos que han nacido o fallecido el día 15 de Agosto Matemáticos nacidos este día: 1795 : Léger1863 : Aleksei Krylov1882 : Chazy1886 : Lockhart1892...
  • Matemáticos del día
    La mejor revisión de la aritmética consiste en el estudio del álgebra F.Cajori Matemáticos que han nacido o fallecido el día 14 de Agosto Matemáticos nacidos este día: 1530 : Benedetti1737 : Hutton1842 : Darboux1850 : Ball1865 : Castelnuovo1866 : Vallée...
  • Matemáticos del día
    Está claro que la economía, si es que va a ser una ciencia,debe ser una ciencia matemática W.S.Jevons Matemáticos que han nacido o fallecido el día 13 de Agosto Matemáticos nacidos este día: 1625 : Bartholin 1704 : Fontaine des Bertins1819 : Stokes1861...
  • Matemáticos del día
    Si uno no puede explicar lo que ha estado haciendo, su trabajo carecerá de valor E.Schrödinger Matemáticos que han nacido o fallecido el día 12 de Agosto Matemáticos nacidos este día: 1769 : Bartels1862 : Jules Richard1887 : Schrödinger 1930 : Tits Matemáticos...