Overblog
Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

19 septiembre 2022 1 19 /09 /septiembre /2022 05:04

La prueba final de una teoría es que sea capaz de resolver los problemas que la originaron

T.Dantzig

Matemáticos que han nacido o fallecido el día 19 de Septiembre

      

Matemáticos nacidos este día:

1749 : Delambre
1790 : Terrot
1840 : McClintock
1888 : Alexander
1889 : Zylinski
1895 : Lumsden
1908 : Stark
1914 : Lyapin

Matemáticos fallecidos este día:

1843 : Coriolis
1958 : Archibald Milne
1988: Patrick Moran
1995 : Peierls
2002 : Falconer
2010 : Joseph Kruskal
2016 : Trakhtenbrot

Curiosidades del día

  • Hoy es el ducentésimo sexagésimo segundo día del año.
  • 262 es el quinto número meándrico, un meandro o meandro cerrado es una curva cerrada que no se interseca a sí misma e interseca una línea un cierto número de veces. Puede verse intuitivamente como un camino que cruza un río a través de una cantidad de puentes. El número de meandros distintos de orden n es llamado número meándrico, Mn.
  • 262 es un número deficiente pues la suma de sus divisores propios es menor que él.
  • 262=4^(1/2)+4+44
  • 262 es un número semiprimo pues es producto de dos primos 262 = 2x131
  • 262 es un número digitalmente poderoso pues puede expresarse como suma de potencias positivas  de sus dígitos 27+6+27
  • 262 es un número feliz pues cumple que si sumamos los cuadrados de sus dígitos y seguimos el proceso con los resultados obtenidos el resultado es 1.
  • 262 es un número palíndromo o capicúa.
  • 262 es un número pernicioso pues su expresión binaria,100000110, contiene un número primo (39 de unos
  • 262 es un número cortés pues puede expresarse como suma de naturales consecutivos  64 + ... + 67
  • 262 es un número aritmético pues la media de sus divisores es un número entero, 99
  • 262 es un número odioso pues su expresión binaria contiene un número impar de unos.
  • 262 es un número libre de cuadrados pues en su descomposición factorial no se repite ningún factor.
  • 262 es un número ondulado, de la forma ababab....
  • 262 es un número intocable pues no es la suma de los divisores propios de ningún número

Tal día como hoy del año:

  • 1648, La teoría de la presión atmosférica y la existencia de vacío fueron confirmadas por los experimentos diseñados por Blaise Pascal. El propio Pascal no subió penosamente la montaña con el barómetro en la mano, sino que le preguntó a su cuñado, Florian Perier. Acompañado de un  "digno caballero", para realizar la medida. De la correspondencia de Torricelli con Ricci se desprende claramente que él sabía que el peso del aire disminuía con la altitud, pero fue Pascal quien primero instruyó la medida y calculó el peso de todo el aire que presiona la Tierra.
  • 1783, Los hermanos Montgolfer repiten su experimento del 4 de junio de 1783, en presencia de Luis XVI en Versalles. A la una en punto, la multitud se volvió loca cuando el globo se elevó graciosamente libre llevando un gallo, una oveja y un pato
  • 1861, El químico ruso Alexander Butlerov presentó por primera vez una definición de "estructura química".
  • 1894, En una carta a Felix Klein (19 de septiembre de 1894), Peano escribió: "El propósito de la lógica matemática es analizar las ideas y el razonamiento que figuran especialmente en las ciencias matemáticas". Peano no era ni un logicista ni un formalista. Creía más bien que las ideas matemáticas se derivan en última instancia de nuestra experiencia del mundo material
  • 1994, En el transcurso de tres conferencias impartidas en el Instituto Isaac Newton de Ciencias Matemáticas el 21, 22 y 23 de junio de 1993, Wiles había anunciado su prueba de la conjetura de Taniyama-Shimura, y por lo tanto de Último teorema de Fermat. Posteriormente, hubo una cobertura de prensa relativamente grande.
  • Después de anunciar sus resultados, (Nick) Katz fue un árbitro en su manuscrito y le hizo a Wiles una serie de preguntas que llevaron a Wiles a reconocer que la prueba contenía un vacío. Hubo un error en una parte crítica de la demostración que dio un límite para el orden de un grupo en particular: el sistema de Euler utilizado para extender el método de Flach estaba incompleto. Wiles y su ex alumno Richard Taylor pasaron casi un año resolviéndolo. Wiles indica que en la mañana del 19 de septiembre de 1994 se dio cuenta de que la razón específica por la que el enfoque de Flach no funcionaría sugirió directamente un nuevo enfoque con la teoría de Iwasawa que resolvió todos los problemas anteriores con este último y resultó en un CNF que fue válido para todos los casos requeridos. El 6 de octubre, Wiles envió la nueva prueba a tres colegas, incluido Faltings. La nueva prueba fue publicada y, a pesar de su tamaño, es ampliamente aceptado como probablemente correcto en sus componentes principales. 
  • 2009,   en la reunión de otoño de la Sociedad Británica de Historia de las Matemáticas (BSHM), The Archimedes Codex de Reviel Netz y William Noel recibió el Premio Neumann al mejor libro de la historia de las matemáticas dirigido a un público amplio
Delambre

 El matemático y astrónomo francés Jean Baptiste Joseph Delambre contrajo una grave enfermedad con tan sólo 15 años, llegando a temerse incluso su muerte. No obstante, con el paso del tiempo fue mejorando, y la única secuela que le quedó fue la pérdida total de las pestañas para toda su vida. Una vez se fue recuperando de la viruela, estudió y demostró sus grandes capacidades tanto matemáticas como astronómicas.

Se le conoce, sobre todo, por medir la longitud del arco meridiano que va desde Dunkerque (norte de Francia) hasta Montjuic (Barcelona), pasando por Francia, entre los años 1792 y 1798, sin olvidar que fue ayudado en ello por el astrónomo y Geógrafo francés Pierre Méchain. Los resultados de estas investigaciones sirvieron para establecer un sólido sistema métrico decimal.

También es muy conocido por sus trabajos acerca de la historia de la ciencia. Se le debe asimismo la confección de tablas muy precisas referidas a las posiciones de los planetas. Como reconocimiento a todas las aportaciones que hizo a lo largo de su vida se hizo figurar el nombre de Delambre en la cartografía lunar, en concreto en uno de sus cráteres.

Se le deben las fórmulas de trigonometría esférica que llevan su nombre, completando las de Napier en  un triángulo rectángulo común, para un triangulo esférico

Alexander

El matemático norteamericano James Waddell Alexander  fue un matemático y topólogo que formó parte de un influyente elite,  la escuela de topología Princeton , que incluía Oswald Veblen, Lefschetz Salomón, y otros. Fue uno de los primeros miembros del Instituto de Estudios Avanzados  y también profesor en la Universidad de Princeton .

Fue un destacado montañista , después de haber tenido éxito en muchos grandes ascensos, por ejemplo, en los Alpes suizos y Montañas de Colorado Rockies,  La Chimenea de Alexander, en el Rocky Mountain National Park , lleva su nombre. En Princeton, le gustaba escalar los edificios universitarios, estando siempre la ventana de su oficina en el piso superior  abierta para que pudiera entrar.

Fue un pionero en la topología algebraica, sentando las bases para las ideas de  Henri Poincaré en teoría de la homología y la consecuente fundación de la teoría de cohomología , que se desarrolló gradualmente en la siguiente década después de dar una definición de cocadenas . Por ello, en 1928 fue galardonado con el Premio Memorial Bôcher . También ha colaborado en los inicios de la teoría de nudos por la invención de la invariante de Alexander de un nudo. A partir de esta invariante, definió el primero de los invariantes de nudos polinomio .

Con Garland Briggs, dio una descripción de la invariancia combinatoria en nudos nudo sobre la base de ciertos movimientos, ahora  llamados movimientos de Reidemeister , y también un medio de computación homológica invariante del diagrama de nudo. Probó  la  invariancia  topológica de los números de Betti y de los coeficientes de torsión, y también un importante teorema de dualidad, generalizando el de Poincaré e indirectamente el teorema de la curva de Jordan. Demostró que  dos  variedades  de  dimensión  tres  pueden  tener  los  mismos  números  de Betti,  coeficientes  de  torsión y grupo fundamental sin ser por ello homeomorfas .

Hacia el final de su vida, Alexander se convirtió en un recluso. Era conocido como un socialista y su protagonismo llamó la atención del macartismo. 

Coriolis

El matemático e ingeniero francés Gaspard Gustave Coriolis ha dado su nombre a la fuerza de Coriolis que afecta el movimiento de los cuerpos en un medio en rotación

Es también autor de "Teoría matemática de los efectos del juego del billar"

Sostenía que la mecánica debía enunciar principios generales aplicables a la operación de los motores y al análisis del funcionamiento de las máquinas; eran estas las que le interesaban, no los océanos y la atmósfera. En términos modernos diríamos que Coriolis era más un ingeniero —o un profesor de ingeniería— que un científico.

Fue profesor de análisis geométrico y de mecánica general en l'École Centrale des Arts et Manufactures. Su interés en la dinámica del giro de las máquinas le condujo a las ecuaciones diferenciales del movimiento desde el punto de vista de un sistema de coordenadas que a su vez está rotando, trabajo que presentó a la Académie des Sciences. Debido a la importancia de su trabajo, el efecto Coriolis lleva su nombre.

En su memoria « Du calcul de l'effet des machines » 1829 llama trabajo a la cantidad , usualmente llamada en esa época potencia mecánica, cantidad de acción ó efecto dinámico precisando la ambigüedad de estas expresiones: las considera inapropiadas. La ciencia le da la razón.

Con él y Jean Poncelet (1788-1867), el teorema de la energía cinética toma su forma casi definitiva y la enseñanza de la mecánica será « desempolvada » (la cuestión de las unidades y de la homogeneidad de las fórmulas se vuelve fundamental). 

Falconer

 La matemática norteamericana Etta Zuber Falconer fue una de las primeras mujeres afroamericanas en conseguir un Doctorado en Investigación en Matemáticas. Con 15 años entró en la Universidad de Fisk, en Nashville, Tennessee,donde se especializó en matemáticas y estudió química como asignatura secundaria.En 1953 se graduó con el reconocimiento summa cum laude.Después fue a estudiar a la Universidad de Wisconsin, donde obtuvo un Máster de Ciencia en Matemáticas, en 1954.Más adelante, volvió a Mississippi para ejercer de profesora. En 1965 se mudó con su familia a Atlanta. Allí entró en la Universidad de Emory, donde obtuvo otro Doctorado en Investigación en Matemáticas en 1969, con una tesis de álgebra abstracta. En 1982 obtuvo un Máster en Ciencias de la Computación en la Universidad de Atlanta. Dedicó 37 años de su vida enseñando matemáticas en la Universidad Spelman. En 1995 dijo "Mi carrera entera ha estado dedicada a aumentar el número de mujeres afroamericanas en carreras matemáticas". Murió el 18 de septiembre de 2002

Kruskal

El matemático, estadístico, científico de la computación y la psicometría, estadounidense Joseph B. Kruskal fue un investigador del Math Center (Bell-Labs)que en 1956 descubrió su algoritmo para la resolución del problema del Árbol de coste total mínimo (minimum spanning tree - MST) también llamado árbol recubridor euclídeo mínimo. Este problema es un problema típico de optimización combinatoria, que fue considerado originalmente por Otakar Boruvka(1926) mientras estudiaba la necesidad de electrificación rural en el sur de Moravia en Checoslovaquia.

El objetivo del algoritmo de Kruskal es construir un árbol (subgrafo sin ciclos) formado por arcos sucesivamente seleccionados de mínimo peso a partir de un grafo con pesos en los arcos.

El Algoritmo de Kruskal que resuelve la misma clase de problema que el de Prim, salvo que en esta ocasión no partimos desde ningún nodo elegido al azar. Para resolver el mismo problema lo que hacemos es pasarle a la función una lista con las aristas ordenada de menor a mayor, e iremos tomando una para formar el ARM. En un principio cada nodo está en un digamos grupo distinto, al elegir una arista de la lista miraremos si no están los nodos conectados ya en el mismo grupo, de no estarlo fusionamos ambos grupos y comprobamos si hemos encontrado ya la solución, para devolver el resultado. 

Joseph era hermano del matemático y estadístico William Kruskal (autor de la Prueba de Kruskal-Wallis), y del matemático y físico Martin Kruskal (autor de las coordenadas de Kruskal-Szekeres)

Lyapin 

El matemático ruso (ahora ucraniano) Evgeny Sergeevich Lyapin es especialista enálgebra, y tiene fama de haber escrito la primera monografía sobre semigrupos en 1960.

Fue expertode la UNESCO para elaborar recomendaciones para mejorar la enseñanza

Liapine comenzó a publicar artículos sobre semigrupos a partir de 1947 siendo uno de los pioneros en este campo, con AK Suschkewitsch , Alfred H. Clifford , AI Malcev  , D. Rees , P. Dubreil , M.-L. Dubreil-Jacotin, FW Levi y otros. En 1960 publicó su monografía sobre los semi-grupos, en ruso, traducido en 1963 y reimpresa dos veces. También trabajó activamente en operaciones parciales y escribió una monografía sobre el tema con AE Evseïev, publicado en ruso en 1991 y traducido en 1997 

Tuvo más de cincuenta estudiantes de doctorado muchos de los cuales han tenido una descendencia académica. Fue autor de  un libro de ejercicios de la teoría de grupos, el único que ha sido traducido al Inglés.

Peierls

El físico británico Sir Rudolf Ernst Peierls, nació en Alemania en el seno de una familia judía. Rudolph Peierls tuvo un papel importante en el programa nuclear de Gran Bretaña, colaborando con el Proyecto Manhattan, pero también tuvo un papel destacado en muchas ciencias modernas. Su impacto sobre la física puede ser probablemente mejor descrito por su obituario de Física Hoy: "Rudolph Peierls ... un actor importante en el drama de la irrupción de la física nuclear en los asuntos del mundo". 

Es conocido por:

  • Memorándum Frisch-Peierls
  • Corchete de Peierls
  • Tensión de Peierls-Nabarro
  • Acuñar el término de "procesos umklapp"
  •  Relación Bohr-Peierls-Placzek
  • Teoría de la onda de densidad de carga
  • Modelo de Peierls-Hubbard
  •  Transición de Peierls. 

Entre otros, ha recibido los siguientes premios:

  • Medalla Royal (1959)
  • Medalla Lorentz (1962) 
  • Medalla Max Planck (1963)
  • Premio Enrico Fermi (1980) 
  • Medalla Matteucci (1982) 
  • Medalla Copley (1986)

Terrot

El religioso y matemático británico. Charles Hughes Terrot estudió el Trinity College (Cambridge) donde se graduó en 1812. El año siguiente es nombrado diácono de la Iglesia Episcopal Escocesa y fellow del Trinity College. En 1815, al ser elevado al sacerdocio, es destinado a Haddington (Escocia). En 1817 irá a Edimburgo donde permanecerá el resto de su vida, ocupando puestos cada vez más destacados de la iglesia de Escocia, llegando a ser el primus de la congregación entre 1857 y 1862. Terrot dedicaba su tiempo libre a la reflexión matemática, a la poesía ya la arquitectura.

En 1840 viene ser elegido fellow de la Royal Society of Edinburgh , en la que participó activamente en sus sesiones públicas y de la que fue vicepresidente desde 1844 hasta 1860.

Quizás su obra más importante [1] es un artículo sobre las probabilidades combinadas publicado en 1856 en los Proceedings de la Royal Society of Edinburgh. En este artículo se pregunta sobre la probabilidad de un fenómeno del que sólo sabemos que ha sido realizado p + q veces, con el resultado de haber obtenido p resultados positivos y q resultados negativos. 

Otro artículo suyo de 1847, sobre los números complejos , parece haber tenido un efecto notable sobre PG Tait y JC Maxwell .

Trakhtenbrot

Boris Avraamovich Trakhtenbrot , cuyo primer nombre también es Boaz, es un informático , lógico y matemático rumano , soviético , soviético e israelí aunque nacido en Moldavia.

En 1950, Trakhtenbrot defendió una tesis ( "Problemas de decidibilidad para clases finitas y definiciones de conjuntos finitos" ) bajo la dirección de Pyotr Sergeyevich Novikov en el Instituto de Matemáticas de la Academia de Ciencias de Ucrania . En la Unión Soviética, trabajó por primera vez en Penza, a unos 700 km al sureste de Moscú, y desde principios de la década de 1960 hasta fines de la década de 1970, en el Departamento de Cibernética de Matemáticas de Akademgorodok ( Novosibirsk ).

Trakhtenbrot emigró a Israel a finales de 1980. Fue profesor en la Universidad de Tel Aviv hasta 1991, cuando se jubila. Muchas de sus obras lo convierten en uno de los padres fundadores de la informática teórica. Se lo describe como un gran visionario, pionero en muchas direcciones e introduciendo conceptos innovadores que han tenido un impacto significativo en retrospectiva, pero no han encontrado el eco que merecían en ese momento. Estos trabajos, luego clasificados en la categoría "cibernética", se encontraron en la URSS con críticas y reticencias , tanto científicas como políticas. 
En 1964 , Trakhtenbrot demuestra un teorema fundamental en la teoría de la complejidad , ahora llamado el teorema de la brecha de Borodin (de) (en inglés "teorema de la brecha", "teorema de la brecha" en Perifel  ). No se notó en Occidente en ese momento, y fue redescubierto en 1972 por Allan Borodin ; ahora lleva el nombre del segundo. El teorema dice que hay agujeros arbitrariamente grandes en la jerarquía de las clases de complejidad. 
En su tesis, en 1950, demuestra cuál es el teorema de la teoría del modelo de Trakhtenbrot . Él dice que el problema de la verificación en el cálculo de predicados de la clase de modelos finitos es indecidible o, de manera equivalente, que el conjunto de fórmulas de primer orden que son válidas en estructuras finitas no es recursivamente enumerable.  

A finales de la década de 1950, Trakhtenbrot, por un lado, J. Büchi y C. Elgot, por otro lado , demuestran independientemente la equivalencia entre los autómatas finitos y la lógica monárquica de segundo orden (MSO), un resultado llamado teorema de Buchi-Elgot-Trakhtenbrot  .

A finales de la década de 1970, Trakhtenbrot trabajó en varios conceptos de competencia. También realiza contribuciones en la teoría de autómatas finitos, complejidad abstracta, lógica algorítmica, cálculo probabilístico, verificación de programas, cálculo lambda, semántica de programación, teoría de tipos, semántica de sistemas híbridos o competidores.

Entre sus alumnos están Janis M. Barzdins, Rusins V. Freivalds, Valery Nepomnyashchy, Vladimir Yu, Sazanov, A. Ja. Dikovsky, Miroslav I. Kratko, Nikolai Beljakin

Patrick Moran

El estadístico australiano Patrick Alfred Pierce Moran , comúnmente conocido como Pat Moran, hizo importantes contribuciones a la teoría de la probabilidad y su aplicación a la genética poblacional y evolutiva

Durante la guerra, Moran trabajó en el desarrollo de cohetes en el Ministerio de Abastecimiento y más tarde en el Laboratorio de Balística Externa en Cambridge. Después de la guerra, Moran regresó a Cambridge donde fue supervisado por Frank Smithies y trabajó sin éxito para determinar la naturaleza del conjunto de puntos de divergencia de las integrales de Fourier de funciones en la clase Lp , cuando 1 < p <2. Se rindió en este proyecto y fue empleado como investigador senior en el Instituto de Estadística de la Universidad de Oxford 

En 1951, Moran fue nombrado profesor fundamental de estadística en la Escuela de Investigación de Ciencias Sociales de la Universidad Nacional Australiana en Canberra . Trabajó en el estudio estocástico de la teoría de las presas y en la genética de poblaciones, publicando su primer artículo "Procesos aleatorios en genética" en Proceedings of the Cambridge Philosophical Society en 1958 y culminando en su libro de 1962 The Statistical Processes of Evolutionary Theory . También trabajó en probabilidad geométrica. 

McClintock

Thumbnail of Emory McClintock

El matemático estadounidense John Emory McClintock durante muchos años el principal actuario de Estados Unidos. Publicó 30 artículos entre 1868 y 1877 sobre cuestiones actuariales. Sin embargo, sus publicaciones no se limitaron a cuestiones relacionadas con las pólizas de seguro de vida. Publicó alrededor de 22 artículos sobre temas matemáticos. Un artículo trata las ecuaciones en diferencias como ecuaciones diferenciales de orden infinito y otros analizan las ecuaciones quínticas que son solubles algebraicamente. Publicó Una solución simplificada de la cúbica en 1900 en Annals of Mathematics. Otro trabajo, Sobre la naturaleza y uso de las funciones empleadas en el reconocimiento de residuos cuadráticos (1902), publicado en Transactions of the American Mathematical Society, es sobre residuos cuadráticos

Compartir este post
Repost0

Artículos Recientes

  • Matemáticos del Día
    276 es un número aritmético El Sol tiene el tamaño de un pie humano Heráclito Matemáticos que han nacido o fallecido el día 3 de Octubre Matemáticos nacidos este día: 1863 : Zaremba 1881: Dudley Woodard 1888 : Williams 1889 : Ralph Jeffery 1933: Wolfgang...
  • Matemáticos del Día
    Conocer, descubrir, publicar, ese es el destino de un científico F. Arago Matemáticos que han nacido o fallecido el día 2 de Octubre Matemáticos nacidos este día: 1568 : Ghetaldi 1791 : Petit 1791 : Victor Amédée Lebesgue 1825 : John Walker 1875 : Arthur...
  • Matemáticos del Día
    Sólo en las ciencias matemáticas existe la identidad entre las cosas que nosotros conocemos y las cosas que se conocen en modo absoluto H.Eco Matemáticos que han nacido o fallecido el día 1 de Octubre Matemáticos nacidos este día: 1671 : Grandi 1814 :...
  • Matemáticos del Día
    Cualquiera que no esté cometiendo errores es que no está intentándolo lo suficiente R.P.Feynman Matemáticos que han nacido o fallecido el día 30 de Septiembre Matemáticos nacidos este día: 1550 : Mastlin 1775 : Adrain 1829 : Wolstenholme 1883 : Hellinger...
  • Teorema del día
    Teorema de Green El científico autodidacta inglés George Green (1793-1841) publicó, en 1828, en privado un ensayo sobre la aplicación del análisis matemático a las teorías de la electricidad y el magnetismo, pero sólo 100 copias se imprimieron y la mayoría...
  • Matemáticos del Día
    272 es un número cortés Las matemáticas son las búsqueda de pautas R.P.Feynman Matemáticos que han nacido o fallecido el día 29 de Septiembre Matemáticos nacidos este día: 1561 : Roomen 1803 : Sturm 1812 : Göpel 1868 : Bosworth 1876 : Scorza 1895 : Hotelling...
  • Matemáticos del Día
    Pensar es moverse en el infinito H.D. Lacordaire Matemáticos que han nacido o fallecido el día 28 de Septiembre Matemáticos nacidos este día: 1605 : Boulliau 1698 : Maupertuis 1761 : Budan de Boislaurent 1824 : Allman 1833 : Delannoy 1873 : Coolidge 1881...
  • Matemáticos del Día
    El álgebra sólo existe para el esclarecimiento de la geometría H.Reichenbach Matemáticos que han nacido o fallecido el día 27 de Septiembre Matemáticos nacidos este día: 1677 : Doppelmayr 1719 : Kästner 1725 : DArcy 1843 : Tarry 1855 : Appell 1876 : Hedrick...