Overblog
Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

23 abril 2021 5 23 /04 /abril /2021 05:08

La formulación de un problema, es más importante que su solución..

A.Einstein.

 Matemáticos que han nacido o fallecido el día 23 de Abril

      

 


Matemáticos nacidos este día:

1628 : Hudde
1858 : Planck
1907 : Vekua
1908 : Mikhlin
1910 : Macintyre
1911 : Behrend
1914 : Polozii
1923 : Dezin

 

Matemáticos fallecidos este día:

1927 : Ahren
1985: Nora Calderwood

 

 

 

 

 

Curiosidades del día

  • Hoy es el centésimo décimo tercer día del año.
  • 113 es un número primo.
  • El número que se obtiene con cualquier reordenación de sus cifras es primo.
  • La suma de las 113 primeras cifras de e es un número primo.
  • 113 es el menor número cuyo producto y suma de sus cifras es primo.
  • 113 pi es casi exactamente 355, ningún día del año está tan cerca 113 pi=354.9999699
  • 113 es un número deficiente pues es mayor que la suma de sus divisores propios
  • 113 es un número libre de cuadrados pues en su descomposición factorial no se repite ningún factor

Tal día como hoy del año:

  • 1827, Sir William Hamilton presentó su Teoría de los sistemas de rayos en la Royal Irish Academy de Dublín. Aunque todavía era un estudiante de pregrado, con tan solo 21 años, su obra es una de las obras importantes en óptica, pues brindó una sola función que aglutina la mecánica, la óptica y las matemáticas. Condujo al establecimiento de la teoría ondulatoria de la luz, que da que la luz es una forma de energía que viaja en ondas.
  • 1973, Estados Unidos emitió un sello conmemorativo en honor al año 500 de la publicación de De Revolutionibus de Copérnico.
  • 1994, físicos del Laboratorio del Acelerador Nacional Fermi del Departamento de Energía descubrieron la partícula subatómica llamada quark top
Hudde

Johann Hudde fue un matemático holandés que trabajó con máximos y mínimos y con la teoría de las ecuaciones.

El padre de Johann Hudde era Hudde Gerrit ,un comerciante adinerado que actuó como un miembro de Ámsterdam en el Consejo de Administración de la Compañía Holandesa de las Indias Orientales desde 1632.

Desde 1648, Johann asistió a la Universidad de Leiden, donde estudió derecho. Sin embargo, en Leiden, se introdujo a las matemáticas avanzadas, donde recibió clases privadas de su maestro Van Schooten

Desde 1654 hasta 1663, Hudde trabajó las matemáticas como parte del grupo de investigación geométrica de Van Schooten.

Desempeñó durante 30 años el cargo de alcalde de Ámsterdam, siendo el primer mandato entorno a 1670. Políticamente, fue considerado moderado.

Todo el trabajo matemático de Hudde tuvo lugar antes de que empezaran sus labores políticas en 1663. Hudde trabaja con máximos y mínimos y con la teoría de ecuaciones. Encontró un método ingenioso para encontrar múltiples raíces de una ecuación que es esencialmente el método moderno de búsqueda del mayor factor común de un polinomio y sus derivados.

Un ejemplo de la regla Hudde apareció primero en Exercitatione mathematicae (escrito por Van Schooten en 1657).

En 1658 escribió una carta titulada Epistola secunda, de maximis et minimis (segunda carta en relación con máximos y mínimos) que envió a Van Schooten y éste la publicó como un apéndice en su edición de La Géométrie (Descartes) en 1659. 

Planck

El físico alemán  Max Karl Ernst Ludwig Planck recibió el Premio Nobel de Física en 1918 por su logro. Él describió en su discurso del Nobel dado el 2 de Junio de 1920 cómo hizo sus descubrimientos. 

"Durante muchos años, [mi meta] fue resolver el problema de la distribución de energía en el espectro normal del calor irradiado. Después de que Gustav Kirchhoff hubiese demostrado que el estado de la radiación de calor que tiene lugar en una cavidad delimitada por cualquier material emisor y absorbente a una temperatura uniforme es totalmente independiente de la naturaleza del material, se demostró una función universal que era dependiente sólo de la temperatura y la longitud de onda, pero de ningún modo de las propiedades del material. El descubrimiento de esta destacable función prometía una visión más profunda de la conexión entre la energía y la temperatura que es, de hecho, el problema principal en la termodinámica y por tanto en toda la física molecular. ...

En esa época mantuve lo que hoy serían consideradas ingenuamente inocentes y asumibles esperanzas, de que las leyes de la electrodinámica clásica nos permitirían, si se abordaran de una forma suficientemente general evitando hipótesis especiales, comprender la parte más significativa del proceso que esperaríamos, y por tanto lograr la meta deseada. ...

[Varios métodos diferentes] mostraron más y más claramente que un importante elemento de conexión o término, esencial para llegar a la base del problema, tenía que estar perdido. ...

Estuve ocupado... desde el día en que yo [establecí una nueva fórmula para la radiación], con la tarea de encontrar una interpretación física real de la fórmula, y este problema me llevó automáticamente a considerar la conexión entre la entropía y la probabilidad, es decir, el tren de ideas de Boltzmann; posteriormente tras varias semanas del más duro trabajo de mi vida, la luz penetró la oscuridad, y una nueva perspectiva inconcebible se abrió ante mi. ...

Debido a que [una constante en la ley de la radiación] representa el producto de la energía y el tiempo ... la describí como el cuanto elemental de acción. ... Mientras que fuera mirado como infinitamente pequeño ... todo estaba correcto; pero en el caso general, sin embargo, un hueco se abría en un lugar o en otro, que se convertía en más importante cuanto más débiles y rápidas se considerasen las vibraciones. Todos esos esfuerzos en salvar las distancias se derrumbaron pronto dejando poco lugar a dudas. O bien el cuanto de acción era una cantidad funcional, con lo que toda la deducción de la ley de la radiación era esencialmente una ilusión que representaba sólo un papel vacío sobre fórmulas sin significado, o bien la derivación de la ley de la radiación debía jugar un papel fundamental en la física, y aquí había algo completamente nuevo, nunca oído con anterioridad, que parecía requerir que revisáramos básicamente todo nuestro pensamiento físico, construido como lo estaba, a partir del tiempo del establecimiento del cálculo infinitesimal por Leibniz y Newton, sobre la aceptación de la continuidad de todas las conexiones causativas. La experimentación decidió que era la segunda alternativa".

Al principio la teoría encontró resistencia pero, debido al exitoso trabajo de Niels Bohr calculando las posiciones de las líneas espectrales usando la teoría, fue generalmente aceptada. El mismo Planck explica cómo, a pesar de haber inventado la teoría cuántica1, él mismo no la comprendía al principio:

"Intenté inmediatamente soldar alguna forma el cuanto elemental de acción en el marco de la teoría clásica. Pero contra todos esos intentos esta constante se mostró testaruda ... Mis fútiles intentos por integrar el cuanto elemental de acción en la teoría clásica continuaron durante varios años y me costaron muchos esfuerzos".

Planck, que tenía 42 años cuando hizo este histórico anuncio del cuanto, tomó poca parte en el posterior desarrollo de la teoría cuántica. Fue dejado a Einstein con las teorías de los cuantos de luz, a Poincaré que probó matemáticamente que los cuantos eran una consecuencia necesaria de la ley de la radiación de Planck, Niels Bohr con su teoría del átomo, Paul Dirac y otros

Macintyre

Sheila Scott Macintyre fue una matemática escocesa conocida por su trabajo en la constante Whittaker. También es creadora de un diccionario científico multilingue: inglés - alemán - ruso. En el momento de su muerte trabajaba en el japonés

Sheila Macintyre fue un miembro activo de la Sociedad Matemática de Edimburgo y de la Asociación Matemática. En 1958 fue elegida miembro de la Royal Society de Edimburgo . 

En 1958 Macintyre y su esposo aceptaron visitar cátedras de investigación en la Universidad de Cincinnati. Allí enseñó hasta su muerte prematura por cáncer.

Mikhlin

El matemático ruso Solomon Grigoryevich Mikhlin trabajó en los campos de la elasticidad lineal, integrales singulares y análisis numérico. Es más conocido para la introducción del concepto de " símbolo de un operador integral singular ", que finalmente llevó a la fundación y desarrollo de la teoría de operadores seudodiferenciales . 

Mikhlin no experimentó dificultades en la misma escala que los matemáticos soviéticos judíos más jóvenes hicieron desde mediados de 1960. Podía viajar a los países del bloque de Europa del Este e incluso fue miembro de la delegación soviética en el 1958 el Congreso Internacional de Matemáticos en Edimburgo, Escocia. Fue profesor titular de la Universidad, miembro permanente del Consejo Científico en MatMekh, y el jefe de un laboratorio. Sin embargo, se sintió fuertemente la atmósfera general antisemita. "Ellos tienen el poder, pero tenemos teoremas. En ellos está nuestra fuerza"

Sus principales contribuciones pertenecen a la teoría de la elasticidad y problemas de contorno elípticos, integrales singulares y multiplicadores de Fourier , así como las matemáticas numéricas.

En la teoría de la elasticidad matemática, Mikhlin se refiere a tres temas: el problema plano (sobre todo desde 1932 hasta 1935), la teoría de los depósitos (de 1954) y el espectro Cosserat  (1967-1973) 

Tal vez sus contribuciones más importantes son sus trabajos sobre la teoría de operadores integrales singulares y ecuaciones integrales singulares: es uno de los fundadores de la teoría multidimensional, junto con Francesco Tricomi y Georges Giraud

Polozii

El matemático ruso Georgii Nikolaevich Polozii estudió en la Universidad de Saratov, que había sido fundada en 1919. Se graduó en 1937 y luego fue nombrado miembro del personal docente de la universidad. En 1949, Polozii fue nombrado miembro de la Universidad de Kiev y permaneció en Kiev hasta su muerte en 1968.
Las principales contribuciones matemáticas puras de Polozii fueron la teoría de funciones de una variable compleja, la teoría de aproximación y el análisis numérico. También hizo importantes contribuciones a la física matemática y las matemáticas aplicadas, en particular trabajando en la teoría de la elasticidad

Behrend

El matemático alemán Felix Adalbert Behrend trabajó en combinatoria, teoría de números y topología. Behrend estudió teoría de números para su doctorado en la Universidad de Berlín con Erhard Schmidt como asesor. Se doctoró en 1933 por su tesis Über numeri abundantes. Incluso antes de la obtención de su doctorado había publicado tres artículos sobre teoría de números, los dos primeros fueron Über einen Satz von Herrn Jarnik (1932) y Über numeri abundantes (1932). El año en que Behrend obtuvo su doctorado, fue también el año en que Hitler llegó al poder en Alemania.
Como muchos alemanes que huyeron de la amenaza nazi, se encontró en Inglaterra, que estaba en guerra con su Alemania natal. Continuó su trabajo sobre teoría de números y publicó "Sobre la obtención de una estimación de la frecuencia de los números primos mediante las propiedades elementales de los números enteros" en el Journal of the London Mathematical Society en 1940. El hecho de que fuera apasionadamente antinazi no hizo nada para ayudarlo a salvarlo de ser internado como un enemigo en 1940 y  embarcado en el barco Dunera con destino a Australia. Siguieron períodos de internamiento en Hay, Orange y Tatura en Australia. 
Después de su liberación en 1942, Behrend fue nombrado tutor en la Universidad de Melbourne. Continuó su investigación en teoría de números y publicó Sobre la frecuencia de los números primos en el Journal of the Royal Society of New South Wales en 1942. Este artículo era una continuación del que había publicado en Londres dos años antes. Al año siguiente publicó un artículo sobre un tema totalmente diferente. Este fue un modelo poliédrico del plano proyectivo que también apareció en el Journal of the Royal Society of New South Wales. Behrend es conmemorado por la 'Conferencia conmemorativa de Behrend en matemáticas', establecida en la Universidad de Melbourne en 1963 con fondos proporcionados por su viuda

Calderwood

La profesora y matemática escocesa Nora Isobel Calderwood estudió en la Universidad de Edimburgo de 1914 a 1920, obteniendo una Licenciatura en Ciencias (Pura) en 1919 y una Maestría en Economía Política en 1920. Los cursos incluían matemáticas, latín, filosofía natural y química. Se unió a la facultad de la Universidad de Birmingham al año siguiente, dando clases de matemáticas. Pronto, sin embargo, regresó a Edimburgo para continuar sus estudios con el matemático Alexander Aitken , obteniendo un doctorado en matemáticas de la Universidad en 1931 con una tesis sobre Investigaciones en la Teoría de Matrices. Calderwood fue miembro de la Edinburgh Mathematical Society y de la London Mathematical Society. Una estudiante, Margaret Lee,  la menciona con cariño como uno de sus recuerdos favoritos: "Dra. Nora Calderwood: una mujer que nos amaba tanto, que apenas podía mantener en secreto las preguntas del examen. Calderwood era una pianista consumada y dio recitales en Birmingham

Compartir este post
Repost0

Artículos Recientes

  • Matemáticos del día
    ... excelsas, supremas, excelentísimas, incomprensibles, inestimables, innumerables, admirables, inefables, singulares..., que corresponden por semejanza a Dios mismo L.Pacioli Matemáticos que han nacido o fallecido el día 8 de Mayo Matemáticos nacidos...
  • Matemáticos del día
    Conviene que todos los ciudadanos entren en contacto con la verdadera matemática, que es método, arte y ciencia, muy distinta de la calculatoria, que es técnica y rutina L.A.Santaló Matemáticos que han nacido o fallecido el día 7 de Mayo Matemáticos nacidos...
  • Matemáticos del día
    Caballeros, esto es sin duda cierto, es absolutamente paradójico, no podemos comprenderlo y no sabemos lo que significa, pero lo hemos demostrado y, por lo tanto, sabemos que debe ser verdad. C.S.Peirce Matemáticos que han nacido o fallecido el día 6...
  • Uno de los teoremas más famosos de la historia
    La prueba de la completitud del cálculo de predicados afianzó a los matemáticos que trabajaban en el campo de los fundamentos en idea de que el programa de Hilbert sería viable. Sin embargo, un año después, en 1931, el propio Gödel echó por tierra todas...
  • Matemáticos del día
    En las matemáticas es donde el espíritu encuentra los elementos que más ansía: la continuidad y la perseverancia. A. France Matemáticos que han nacido o fallecido el día 5 de Mayo Matemáticos nacidos este día: 1580 : Faulhaber 1833 : Fuchs 1842 : Heinrich...
  • Matemáticos del día
    Los hechos no hablan. Poincaré Matemáticos que han nacido o fallecido el día 4 de Mayo Matemáticos nacidos este día: 1733 : Borda 1840 : Rebstein 1845 : Clifford 1876 : Jung 1888: Raymond Butchart 1916 : Montroll 1918: George Carrier Matemáticos fallecidos...
  • Matemáticos del día
    Una buena notación tiene tantas sutilezas y sugerencias que, en ocasiones, se asemeja a un maestro viviente. B.Russell Matemáticos que han nacido o fallecido el día 3 de Mayo Matemáticos nacidos este día: 1842 : Stolz 1857 : Fraser 1860 : Volterra 1905...
  • Matemáticos del día
    La mecánica es el paraíso de las ciencias matemáticas, porque con ella se alcanza el fruto matemático. Leonardo Da Vinci Matemáticos que han nacido o fallecido el día 2 de Mayo Matemáticos nacidos este día: 1588 : Étienne Pascal 1860 : D'Arcy Thompson...