Overblog
Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

22 julio 2015 3 22 /07 /julio /2015 05:06

El cálculo es la ayuda más grande que tenemos para la aplicación de la verdad física, en el sentido más extenso de la palabra

W.F.Osgood

Matemáticos que han nacido o fallecido el día 22 de Julio

      

Matemáticos nacidos este día:

1755 : de Prony
1784 : Bessel
1795 : Lamé
1861 : Ernst Fiedler
1872 : Alexander Durie Russell
1882 : Knopp
1887 : Gustav Hertz
1902 : Baer
1930 : Abhyankar
1935 : Stallings
1948 : Kintala

Matemáticos fallecidos este día:

1575 : Maurolico
1943 : Osgood
1950 : Stepanov
1959 : Dantzig
1995 : Boruvka
  • Hoy es el ducentésimo tercer día del año.
  • 203 es el sexto número de Bell, el número de particiones de un conjunto de seis elementos.
  • 2032 +2033 +1 es primo.
  • 203 es un número feliz pues cumple que si sumamos los cuadrados de sus dígitos y seguimos el proceso con los resultados obtenidos el resultado es 1.
  • 203 es un número deficiente pues es mayor que la suma de sus divisores propios
  • 203 es un número libre de cuadrados
de Prony

El matemático e ingeniero francés Gaspar Clair FranÇois Marie Riche de Prony fue encargado por Napoleón de  la ardua tarea de calcular tablas logarítmicas y trigonométricas, con precisión de valores entre 14 y 29 cifras decimales. Con la ayuda de Carnot, Legendre  y otros matemáticos el trabajo  terminó en 1801. 

Uno de sus inventos más famosos fue el freno  Prony para medir el par motor de máquinas y motores.

Lamé

Al matemático y físico reputado francés Gabriel Lamé, se le deben importantes resultados relativos a la teoría matemática de la elasticidad y a la teoría analítica del calor. Una ecuación diferencial de termodinámica lleva su nombre.

En geometría diferencial   ( en la época se habla de geometría infinitesimal)  crea nuevas herramientas para el estudio de superficies, en particular las coordenadas curvilineas definidas mediante tres cuadricas  homofocales 

Knopp

El matemático alemán Konrad Hermann Theodor Knopp trabajó en funciones complejas y límites generalizados. Su tesis, Grenzwerte von Reihen bei der Annäherung an die Konvergenzgrenze fue supervisada por  Schottky and Frobenius

Fue co-fundador de Mathematische Zeitschrift en 1918,siendo el editor de 1934 a 1952.

Knopp trabajó en los límites generalizadas y escribió libros excelentes sobre funciones complejas. Theorie und der Anwendung Unendlichen Reihen fue publicado en 1922. Elemente der Funktionentheorie se publicó en 1936 con una traducción al Inglés que aparece en 1953

Después de su retiro Knopp continuó publicando trabajos interesantes como Zwei Abelsche Sätze (1952) en la que demostró teoremas abelianos de Laplace Abel transformaciones que están estrechamente relacionados con los conocidos teoremas Tauberian de Karamata. Fue invitado a dar una conferencia en marzo 1952 en una reunión celebrada conjuntamente con la primera reunión de la Unión Matemática Internacional. Él optó por dar la charla expositiva Folgenräume und Limitierungsverfahren. Ein Bericht über Tübinger Ergebnisse.  

Baer 

El matemático alemán Reinhold Baer es conocido por su trabajo en álgebra. Introdujo los módulos inyectivos en 1940. Él es el epónimo de los anillos de Baer .

Baer estudió ingeniería mecánica durante un año en la Universidad de Hanover . Luego se fue a estudiar filosofía en Friburgo en 1921. Mientras estaba en Göttingen en 1922 fue influenciado por Emmy Noether y Hellmuth Kneser . En 1924 ganó una beca para estudiantes especialmente dotados. Baer redactó y publicó en el Journal de Crelle en 1927.

Baer aceptó un puesto en Halle en 1928. Allí publicó "Algebraische Theorie der Körper" de Ernst Steinitz  con Helmut Hasse , publicado por primera vez en el Diario de Crelle en 1910.

Mientras Baer estaba con su esposa en Austria , Adolf Hitler y los nazis llegaron al poder. Baer fue posteriormente informada de que ya no eran necesarios sus servicios en Halle. Louis Mordell lo invitó a ir a Manchester y Baer aceptó.

Baer se quedó en la Universidad de Princeton y fue profesor visitante en el cercano Instituto de Estudios Avanzados de 1935-1937. Durante un tiempo vivió en Carolina del Norte . De 1938 a 1956 trabajó en la Universidad de Illinois en Urbana-Champaign . Regresó a Alemania en 1956. 

Stallings

El matemático norteamericano John Robert Stallings  es conocido por sus contribuciones fundamentales a la teoría geométrica de grupos y topología de 3-variedad. Stallings recibió su doctorado de manos de RalphFox,fue profesor emérito en el Departamento de Matemáticas de la Universidad de California en Berkeley. Ha publicado más de 50 trabajos, principalmente en las áreas de la teoría geométrica de grupos  y topología de la 3-variedades . Entre sus contribuciones más importantes se encuentra una prueba, en un artículo de 1960, de la conjetura de Poincaré en dimensiones mayores de seis y una prueba, en un artículo de 1971, del teorema de Stallings sobre las puntas de los grupos 

Maurolico

El italiano FranÇesco Maurolico  geómetra de origen griego, monje benedictino y gran erudito, destacó particularmente en el estudio de la geometría y de la óptica. Tradujo al latín las obras de Euclides, Arquímedes y otros, y llevó a cabo trabajos sobre el prisma, los espejos esféricos, la cámara oscura y los fenómenos de refracción. Elaboró un tratado sobre las curvas como secciones planas del cono y aplicó el método de inducción. Destacan sus obras Gnomonica  y Arithmeticorum libri duo 

Stepanov

El matemático ruso Vyacheslaw Stepanov estudió en la Universidad de Moscú  matemáticas y física. Fue supervisado por Egorov . Pasó algún tiempo en Göttingen, donde asistió a conferencias de Hilbert y Landau . Regresó a Moscú y, muy influido por Egorov y Luzin , trabajó en las funciones periódicas y las ecuaciones diferenciales .

Fue nombrado Director del Instituto de Investigación de Matemáticas y Mecánica de 1939, cargo que desempeñó hasta su muerte.

Tras la introducción por Harald Bohr de la noción de función casi periódica,  Stepanov construyó e investigó nuevos tipos de estas funciones.

En ecuaciones diferenciales, trabajó en la teoría general de sistemas dinámicos estudiados por GDBirkhoff . En este sentido Stepanov extendió el trabajo de Poincaré .

Dantzig

El matemático holandés David van Dantzig es  conocido por la construcción de la topología de la electroválvula diádica .

Fue  profesor de la Universidad Tecnológica de Delft en 1938, y de  la Universidad de Amsterdam en 1946. Fue uno de los fundadores del Mathematisch Centrum de Ámsterdam.

Originalmente trabajó sobre temas de geometría diferencial y topología , después de la Segunda Guerra Mundial se centró en la probabilidad , haciendo hincapié en la aplicabilidad de las pruebas de hipótesis estadísticas 

Bessel

El astrónomo y matemático alemán Friedrich Wilhelm Bessel es conocido principalmente por haber efectuado las primeras medidas precisas de la distancia  de una estrella y por ser el fundador de la escuela alemana de astronomía de observación.

En matemáticas, ha dado su nombre a las funciones de Bessel que introdujo en la resolución de problemas de mecánica celeste haciendo intervenir la teoría de perturbaciones.

Osgood

El matemático americano William Fogg Osgood estudió en Gotinga y Erlangen y se graduó en Harvard, donde fue profesor. 

Fue Editor de la revista Annals Mathematics y presidente de la Sociedad Americana de Matemáticas

Trabajó en análisis complejo, en particular en la representación conforma, uniformización de las funciones analíticas y cálculo de variaciones.

Fue invitado por Felix Klein para escribir un artículo sobre análisis complejo en el Enzyklopädie der mathematischen Wissenschaften que fue ampliado más adelante en el libro Lehrbuch der Funktionentheorie. Además de sus investigaciones en análisis, Osgood también se interesó por la física matemática y escribió sobre la teoría del giroscopio

Boruvka

 

El matemático checo Otakar Boruvka es  más conocido por su trabajo en teoría de grafos, mucho antes de que estableciese como disciplina matemática.

En su artículo de 1926 jistém minimálním problému  ( “Sobre Un Problema Determinado Mínimo”),describe Borůvka un algoritmo para encontrar el árbol de expansión mínima de una red eléctrica, la de Moravia, que ahora se llama algoritmo de Boruvka. El Algoritmo de Boruvka es un algoritmo para encontrar el mínimo árbol de expansión en un grafo ponderado en el que todos sus arcos tienen distinto peso.

El algoritmo fue redescubierto por Choquet en 1938; de nuevo por Florek, Łukasiewicz, Perkal, Steinhaus y Zubrzycki en 1951; y de nuevo por Sollin a principio de la década de 1960. Debido a que Sollin fue el único de ellos que era científico en computación, este algoritmo es frecuentemente llamado Algoritmo de Sollin, especialmente en la literatura sobre computación paralela.

Abhyankar

El matemático indio Shreeram Shankar Abhyankar es conocido por sus contribuciones a la geometría algebraica asi como por la conjetura de Abhyankar en teoría de grupos finitos. Su tesis, escrita bajo la dirección de Oscar Zariski , se tituló uniformización local sobre superficies algebraicas sobre campos de tierra modulares. Sus temas de investigación incluyen la geometría algebraica (en particular la resolución de singularidades , un campo en el que hizo un progreso significativo sobre los campos de característica finita), álgebra conmutativa , álgebra locales , la teoría de valoración , teoría de funciones de varias variables complejas , la electrodinámica cuántica , teoría de circuitos , la teoría de invariantes , la combinatoria , diseño asistido por ordenador y la robótica . Él popularizó la conjetura Jacobiana .

Compartir este post
Repost0

Artículos Recientes

  • Matemáticos del día
    ... excelsas, supremas, excelentísimas, incomprensibles, inestimables, innumerables, admirables, inefables, singulares..., que corresponden por semejanza a Dios mismo L.Pacioli Matemáticos que han nacido o fallecido el día 8 de Mayo Matemáticos nacidos...
  • Matemáticos del día
    Conviene que todos los ciudadanos entren en contacto con la verdadera matemática, que es método, arte y ciencia, muy distinta de la calculatoria, que es técnica y rutina L.A.Santaló Matemáticos que han nacido o fallecido el día 7 de Mayo Matemáticos nacidos...
  • Matemáticos del día
    Caballeros, esto es sin duda cierto, es absolutamente paradójico, no podemos comprenderlo y no sabemos lo que significa, pero lo hemos demostrado y, por lo tanto, sabemos que debe ser verdad. C.S.Peirce Matemáticos que han nacido o fallecido el día 6...
  • Uno de los teoremas más famosos de la historia
    La prueba de la completitud del cálculo de predicados afianzó a los matemáticos que trabajaban en el campo de los fundamentos en idea de que el programa de Hilbert sería viable. Sin embargo, un año después, en 1931, el propio Gödel echó por tierra todas...
  • Matemáticos del día
    En las matemáticas es donde el espíritu encuentra los elementos que más ansía: la continuidad y la perseverancia. A. France Matemáticos que han nacido o fallecido el día 5 de Mayo Matemáticos nacidos este día: 1580 : Faulhaber 1833 : Fuchs 1842 : Heinrich...
  • Matemáticos del día
    Los hechos no hablan. Poincaré Matemáticos que han nacido o fallecido el día 4 de Mayo Matemáticos nacidos este día: 1733 : Borda 1840 : Rebstein 1845 : Clifford 1876 : Jung 1888: Raymond Butchart 1916 : Montroll 1918: George Carrier Matemáticos fallecidos...
  • Matemáticos del día
    Una buena notación tiene tantas sutilezas y sugerencias que, en ocasiones, se asemeja a un maestro viviente. B.Russell Matemáticos que han nacido o fallecido el día 3 de Mayo Matemáticos nacidos este día: 1842 : Stolz 1857 : Fraser 1860 : Volterra 1905...
  • Matemáticos del día
    La mecánica es el paraíso de las ciencias matemáticas, porque con ella se alcanza el fruto matemático. Leonardo Da Vinci Matemáticos que han nacido o fallecido el día 2 de Mayo Matemáticos nacidos este día: 1588 : Étienne Pascal 1860 : D'Arcy Thompson...