Overblog
Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

4 mayo 2012 5 04 /05 /mayo /2012 05:31

Teorema Egregium

 Informalmente, el teorema dice que la curvatura gaussiana de una superficie diferenciable puede determinarse por completo midiendo ángulos y distancias sobre la propia superficie, sin hacer referencia a la forma particular en que se curva dentro del espacio euclídeo tridimensional. Es decir, el concepto de curvatura es un invariante intrínseco de una superficie.

El theorema egregium (en latín: 'teorema destacable') es un resultado fundamental de la geometría diferencial demostrado por Carl Friedrich Gauss y que se refiere a la curvatura de las superficies.

Gauss formuló el teorema (traducido del latín) como:

Por tanto de la fórmula precedente se sigue por sí mismo el destacable teorema siguiente: Si una superficie curva se desarrolla sobre cualquier otra superficie, la medida de la curvatura en cada punto permanece inalterada.

Gauss lo consideró "destacable" (egregium) porque la definición de curvatura gaussiana hace uso directo de la posición de la superficie en el espacio y por tanto es bastante sorprendente que el resultado no dependa de la manera en que la superficie está inmersa en el espacio . En una formulación más actualizada el teorema se podría formular como:

La curvatura gaussiana de una superfice es invariante bajo isometrías locales

Un corolario obvio es que sólo existe una isometría entre dos superficies si tienen la misma curvatura gaussiana.

Una consecuencia del theorema egregium es que no puede existir un mapa a escala de la Tierra sin distorsión, al tener la superficie de la tierra y el plano diferentes curvaturas gaussianas. La proyección de Mercator conserva los ángulos pero distorsiona las áreas, exagerando su tamaño en los polos norte y sur (Australia es mayor que Groenlandia aunque la proyección sugiere lo contrario).

Compartir este post
Repost0

Artículos Recientes

  • Matemáticos del día
    Estudió en Padua, siendo discípulo de Angeli, y donde mantuvo contactos con Nicolaus (II) Bernoulli y con Hermann. Actuó como experto ante el Senado de Venecia en los trabajos de construcción de diques y canales. Rechazó cargos muy importantes para consagrarse...
  • Matemáticos del día
    Las matemáticas son la música de la razón. . Silvester. Matemáticos que han nacido o fallecido el día 14 de Abril Matemáticos nacidos este día: 1629 : Huygens 1868 : Annie Scott Dill Maunder 1917 : Mendelsohn 1868 : Maunder 1920 : Pack 1937: Charles Sims...
  • Matemáticos del día
    ¡ Qué poema el análisis del número áureo!. Paul Valery Matemáticos que han nacido o fallecido el día 13 de Abril Matemáticos nacidos este día: 953 : Al-Karaji 1728 : Frisi 1813 : Duncan Gregory 1823 : Schlömilch 1869 : Maddison 1879 : Severi 1909 : Ulam...
  • Matemáticos del día
    La enorme utilidad de las matemáticas en las ciencias naturales es una circunstancia que bordea el misterio; un hecho para el que no hay una explicación racional.. Eugene Wigner Matemáticos que han nacido o fallecido el día 12 de Abril Matemáticos nacidos...
  • Matemáticos del día
    El arte de hacer matemáticas consiste en encontrar ese caso especial que contiene todos los gérmenes de la generalidad. D. Hilbert Matemáticos que han nacido o fallecido el día 11 de Abril Matemáticos nacidos este día: 1894 : Finsler 1896 : Geary 1904...
  • Matemáticos del día
    Sabemos que la naturaleza se describe con la mejor de todas las posibles matemáticas porque Dios la creó. Alexander Polyakov Matemáticos que han nacido o fallecido el día 10 de Abril Matemáticos nacidos este día: 1651 : Tschirnhaus 1756 : West 1825 :...
  • Matemáticos del día
    La ciencia de la matemática es como un simple castillo de cristal, donde adentro se ve todo, pero de afuera no se ve nada. Norma Banicevich Matemáticos que han nacido o fallecido el día 9 de Abril Matemáticos nacidos este día: 1652 : Le Fèvre 1791 : Peacock...
  • Matemáticos del día
    Ninguna investigación humana puede ser denominada ciencia si no pasa a través de pruebas matemáticas. L. Da Vinci Matemáticos que han nacido o fallecido el día 8 de Abril Matemáticos nacidos este día: 1608: Honoré Fabri 1732 : Rittenhouse 1903 : Stone...