Overblog
Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

26 abril 2021 1 26 /04 /abril /2021 05:01

Con mi mochila filosófica completa sólo puedo subir lentamente la montaña de las matemáticas

Ludwig Wittgenstein

 Matemáticos que han nacido o fallecido el día 26 de Abril

      

 


Matemáticos nacidos este día:

1832 : Robert Tucker
1874 : Huntington
1889 : Wittgenstein
1898: William Kermack
1922 : Aaboe

 

 

Matemáticos fallecidos este día:

1876 : Somov
1902 : Fuchs
1920 : Ramanujan
1946 : Bachelier
1951 : Sommerfeld
1976 : Boyer
2011: Wussing
2014 : Ferrand

Curiosidades del día

  • Hoy es el centésimo décimo sexto día del año.
  • 116!+1 es primo.
  • 1162+1 es primo.
  • El número 1 aparece 116 veces en las primeras 1000 cifras de pi
  • 116 es un número deficiente pues es mayor que la suma de sus divisores propios

Tal día como hoy del año:

  • 1514, Nicolás Copérnico (1473-1543) hizo su primera observación de Saturno. Copérnico propuso más tarde que el sol está estacionario y que la Tierra y los planetas se mueven en órbitas circulares a su alrededor.
  • 1760, Se le pide a Euler que sea tutor de la sobrina de Federico el Grande, la princesa de Anhalt-Dessau. Euler le escribió más de 200 cartas a principios de la década de 1760. En esta fecha envió la tercera de estas cartas. La letra cubría la física del sonido y daba una velocidad de mil pies por segundo. Cierra diciéndole a la Princesa que somos incapaces de escuchar una cuerda vibrando a menos de 30 vibraciones por segundo, o una que sea más de 7552 vibraciones por segundo.
  • 1766 D'Alembert, después de escribir a Federico II elogiando a Lagrange, escribe a Lagrange sobre una oferta para mudarse a Berlín:
    Mi querido e ilustre amigo, el rey de Prusia me ha encargado que te escriba que, si quieres venir a Berlín a ocupar una plaza en la Academia, te da una pensión de 1.500 coronas, que son 6.000 libras francesas ... El señor Euler, descontento por motivos de los que no conozco los detalles, pero en los que veo que todo el mundo lo piensa mal, pide permiso para marcharse y quiere ir a San Petersburgo. El rey, que no estaba demasiado ansioso por concederlo, definitivamente se lo daría si acepta la proposición que ha hecho.
  • 1892, Hermite a Stieltjes: “Declaras este resultado y luego tratas de mortificarme diciendo que es fácil de probar. Como no puedo lograrlo, apelo a su buena naturaleza para que me ayude a salir de esta dificultad ".
  • La revista Time de 1968 (p. 41) informa sobre un "Juicio por las matemáticas" en el que una pareja fue condenada sobre la base de la probabilidad matemática. Más tarde se descubrió que el razonamiento era incorrecto

Wittgenstein

El filósofo, matemático y lingüista austriaco Ludwig Josef Johann Wittgenstein  fue uno de los pensadores más influyentes en la filosofía occidental del siglo XX.

Hijo de un exitoso empresario fabril austriaco, creció en un ambiente pequeñoburgués de tertulias artísticas -especialmente musicales- mecenadas por su familia. De 1903 a 1906 estudió en un colegio industrial en Linz al que también asistió Adolf Hitler. Posteriormente se especializó en ingeniería en Berlín y Manchester, antes de volcar su interés hacia la filosofía de la lógica y de las matemáticas. Combatió en el ejército austrohúngaro durante la Iº Guerra Mundial, en esos años abrazó el cristianismo kenótico (la línea que va de san Agustín a Kierkegaard, pasando por Meister Eckhart, Teresa de Jesús y Blaise Pascal) a partir de las lecturas de Tolstoi. Persuadido (al igual que toda su generación) por la obra de Schopenhauer, adhirió al esperanzado pesimismo individualista preconizado por aquél. 

Su primera obra, el `Tractatus Logicus-Philosophicus`, fue publicado en su versión alemana en 1921, con un título en aquel idioma (`Logische-Philosophische Abhandlung`). Esto es significativo pues en la jerga legal austriaca `Abhandlung` es casi un sinónimo de `testamento`. En efecto, el libro -una velada y aguda reflexión sobre los trabajos de Russell y Frege- pretende revelarse como una obra cerrada, que ejecuta la clausura positiva del saber en lo que concierne a la esfera de las estructuras de la realidad y del pensamiento. El título latino, concebido por G. E. Moore, establece un oblicua conexión con la obra de Spinoza, lo que hace de Wittgenstein una suerte de profeta de la Razón. Sin embargo, el misticismo que sugiere el texto, en medio de la sutil teoría kantiana del sujeto que defiende, emerge como una posibilidad de reserva ante el logocentrismo. Porque, en definitiva, el `Tractatus` es ciertamente un libro sobre ética, empero, lo que sostiene es que nada puede decirse acerca de esa materia.

Tras la publicación del libro y la progresiva desintegración de la Kakania, Wittgenstein trabajó como maestro rural, jardinero en un convento (con la intención luego frustrada de convertirse en monje), y arquitecto hasta su regreso a Cambridge en 1929. A partir de ese año hasta su muerte llevó una vida ascética repartida entre Inglaterra, Noruega, Irlanda y EEUU. Estudió ruso con el anhelo de arraigarse en la URSS junto a su amante Francis Skinner, pero el proyecto no prosperó.

Su obra posterior fue publicada `post-mortem`. En donde mejor se resume aquélla es en un volumen titulado `Investigaciones filosóficas`. Allí puede apreciarse en buena medida la renuncia parcial de Wittgenstein a sus influencias tempranas -Weininger, Boltzmann, Mauthner, etc.- y la relectura de la obra de Frege para desarrollar el concepto de `juegos lingüísticos`, claramente basado en una reflexión sobre el Axioma del Contexto (`sólo en el contexto de una oración una palabra tiene sentido`) que inspiró también la famosísima Teoría de las Descripciones de Russell.  

Fuchs

El matemático alemán Lazarus Fuchs estudió en Berlin donde Weierstrass y Kummer supervisaron su tesis sobre curvatura de superficies.

Fuchs dirigirá el célebre Journal de mathematiques pures et appliquées fundado por Crelle. Pese a que sus primeras investigaciones fueron en geometría diferencial y teoría de números, sus trabajos versan sobre soluciones singulares (funciones fuchsianas) de ecuaciones diferenciales lineales.

En  el  campo  de  las  ecuaciones  diferenciales,  creó  la  teoría  de  las  ecuaciones  lineales  fundada  en  las  funciones  analíticas.  En  un  artículo  de  1866  escribió:  “En  la  situación  actual  de  la  ciencia  el  problema  de  la  teoría  de  las  ecuaciones  diferenciales  no  es  tanto  reducir   una   ecuación   dada   a   cuadraturas,   como   deducir   a   partir   de   la   misma   ecuación   el   comportamiento  de  sus  integrales  en  todos  los  puntos  del  plano,  esto  es,  para  todos  los  valores  de  la  variable  compleja”.  En  1866,  Fuchs  publicó  su  trabajo  principal  sobre  ecuaciones  diferenciales  ordinarias. Sus estudios fueron completados por Poincaré

Ramanujan

Hijo de un contable, que trabajaba para un mercader de paños en Kumbakonam, y de la hija de un modesto oficial brahmán del juzgado de Erodo, mujer de "gran sentido común", nació en el seno de una familia de condición humilde. Después de algún tiempo de matrimonio sin tener hijos, su abuelo materno "pidió a la famosa diosa Namagiri, de la vecina ciudad de Namakkal, que bendijese a su hija con descendencia".

Recibió una beca para estudiar en la Universidad de Madras, pero como sólo le interesaban las matemáticas y nada más le fue suspendido el estipendio.

La  expresión anterior  es de las más conocidas de Srinivasa Ramanujan . El afirmó que ese número es un entero. Sin computadoras, sin otro recurso más que su extraordinaria capacidad de calcular. Desafortunadamente no acertó, pero eso no le quita mérito alguno a este ciudadano de la India nacido en Erode, Tamil un 22 de diciembre de 1887 y cuya muerte se da el 26 de abril de 1920 en Kumbakonam, también en el estado Tamil.

En su carta de presentación al matemático inglés Hardy escribe Ramanujan este texto memorable:

 "Apreciado señor: 

    Me permito presentarme a usted como un oficinista del departamento de cuentas del Port Trust Office de Madrás con un salario de 20 libras anuales solamente. Tengo cerca de 23 años de edad. No he recibido educación universitaria, pero he seguido los cursos de la escuela ordinaria. Una vez dejada la escuela he empleado el tiempo libre de que disponía para trabajar en matemáticas. No he pasado por el proceso regular convencional que se sigue en un curso universitario, pero estoy siguiendo una trayectoria propia. He hecho un estudio detallado de las series divergentes en general y los resultados a que he llegado son calificados como "sorprendentes" por los matemáticos locales... 

    Yo querría pedirle que repasara los trabajos aquí incluidos. Si usted se convence de que hay alguna cosa de valor me gustaría publicar mis teoremas, ya que soy pobre. No he presentado los cálculos reales ni las expresiones que he adoptado, pero he indicado el proceso que sigo. Debido a mi poca experiencia tendría en gran estima cualquier consejo que usted me hiciera. Pido que me excuse por las molestias que ocasiono.

    Quedo, apreciado señor, a su entera disposición .

S. Ramanujan

      Preguntado sobre si Ramanujan tenía algún secreto especial, si difería cualitativamente de los demás matemáticos en los métodos utilizados, si pensaba que había algo realmente anormal en su forma de pensar, Hardy, sin seguridad ni convicción, contesta que no lo cree, y añade:

"Tenía, por supuesto, una memoria extraordinaria. Podía recordar las características de los diferentes números de una manera casi misteriosa. Creo que fue Mr. Littlewood quien señaló que "cada entero positivo era uno de sus amigos personales". Recuerdo una vez que fui a verle cuando yacía enfermo en Putney. Yo había viajado en el taxi número 1729 y observé que el número me parecía más bien insípido y esperaba que no le fuera de mal agüero. "No", contestó, "es un número muy interesante. Es el número más pequeño expresable como suma de dos cubos de dos maneras diferentes" 

      Durante sus cinco años de estancia en Cambridge, que desgraciadamente coincidieron con los de la Primera Guerra Mundial, publicó 21 artículos, 5 de ellos en colaboración con G. H. Hardy. 

"No era un geómetra, le tenía sin cuidado la física matemática y menos aún la posible 'utilidad' de su trabajo matemático en otras disciplinas"

Louis Bachelier


El matemático francés Louis Bachelier está considerado como precursor de la teoría moderna de probabilidades y como el fundador de las matemáticas financieras. 

En Su tesis doctoral, defendida ante Poincaré, titulada Teoría de la especulación, establecía que las especulaciones de la bolsa se parecía al movimiento browniano y podía predecirse a partir del cálculo de probabilidades, el mercado búrsatil <<obéit, à son insu, à une loi qui le domine : la loi de probabilités ».

Sommerfeld

El físico y matemático alemán Arnold Johannes Wilhelm Sommerfeld introdujo la constante de la estructura fina en 1919.

Nacido en Königsberg, donde estudió matemáticas. Tras recibir el doctorado en 1891 se cambió a la universidad de Gotinga, donde recibió la cátedra en 1896. 

El primer trabajo de Sommerfeld bajo la supervisión de Klein fue un impresionante trabajo sobre la teoría matemática de la difracción, su trabajo en este tema contiene una teoría importante de ecuaciones diferenciales. Otros trabajos importantes versaron sobre el estudio de la propagación de las ondas electromagnéticas en cables y sobre el estudio del campo producido por un electrón en movimiento.

En 1906 trabajó en el espectro atómico, estudió la hipótesis de que los rayos X fueran ondas y lo demostró utilizando cristales como rendijas de difracción de tres dimensiones.

El trabajo de Sommerfeld hizo cambiar las órbitas circulares del átomo de Niels Bohr por órbitas elípticas, también introdujo el número cuántico magnético, y en 1916, el número cuántico interno.

En 1906 se convirtió por fin en profesor de física de la universidad de Múnich. Allí entró en contacto con la teoría de la relatividad de Albert Einstein, que aún no estaba aceptada comúnmente. Sus contribuciones matemáticas a la teoría ayudaron a que los científicos más escépticos la aceptasen. Posteriormente se convirtió en uno de los fundadores de la mecánica cuántica, y muchos de sus discípulos se hicieron famosos - los más importantes Werner Heisenberg y Wolfgang Pauli.

Sommerfeld aplicó las estadísticas de Fermi-Dirac al modelo de Drude de los electrones en los metales. La nueva teoría resolvía muchos de los problemas prediciendo las propiedades térmicas de los metales.

Sommerfeld murió en 1951 en Múnich a causa de las heridas de un accidente de tráfico.

Aaboe

El matemático danés Asger Hartvig Aaboe  fue un historiador de las ciencias exactas que es conocido por sus contribuciones a la historia de la antigua astronomía babilónica. Estudió matemáticas y astronomía en la Universidad de Copenhague , y en 1957 obtuvo un doctorado en la Historia de la Ciencia de la Universidad de Brown , donde estudió con Otto Neugebauer, con su tesis "Las teorías planetarias de Babilonia". En 1961 se incorporó al Departamento de Historia de la Ciencia y Medicina de la Universidad de Yale. En sus estudios de la astronomía babilónica, fue más allá de los análisis en términos de las matemáticas modernas para buscan entender cómo los babilonios concibian sus esquemas de cálculo. 

Fue elegido miembro de la Real Academia Danesa de Ciencias y Letras en 1975, siendo presidente de la Academia de Connecticut de la Artes y las Ciencias desde 1970 hasta 1980. Fue miembro de muchas otras sociedades académicas.

Jacqueline Ferrand 
La matemática francesa Jacqueline Ferrand fue, a los 18 años, una de las primeras mujeres en entrar en la École Normale Supérieure de París antes reservada a chicos.
Realizó su tesis (1942) sobre las funciones de variable compleja ( Estudio de la representación conforme en las proximidades de la frontera de un dominio simplemente conexo ) bajo la dirección de Montel (los examinadores eran Denjoy y Valiron ). Al año siguiente, fue nombrada miembro de la Universidad de Burdeos y Caen en 1945. Se casó con Pierre Lelong en 1947 y se unió a la Facultad de Lille el año siguiente, cuando se convirtió en la primera mujer en ocupar una cátedra universitaria.
En 1956, obtuvo un puesto en París (Sorbonne, Jussieu-UPMC) que ocupó hasta su jubilación en 1984. Su enseñanza y trabajo era  principalmente en  análisis real y complejo  y geometría diferencial.
Jacqueline Ferrand es autora de numerosas publicaciones y libros de texto universitarios, fruto de sus enseñanzas hasta 1999. Sus cursos de Matemáticas (4 volúmenes, Dunod), escrito en colaboración con Jean-Marie Arnaudies, profesor de matemáticas en Toulouse Especial (liceo Pierre de Fermat ), fue un éxito de ventas en los años 1970-1990. Todavía está en la impresión, recientemente reeditado. Muy notable fueron los fundamentos de la geometría (1986, Presses Universitaires de France).
Boyer
El historiador y matemático estadounidense Carl Benjamin Boyer escribió Conceptos del cálculo (1949), Historia de la geometría analítica (1956), Historia de las matemáticas (1968).
Fue corrector-editor de Scripta Mathematica. Boyer fue valedictorian de su clase. Recibió un A.B. del Columbia College en 1928 y un M.A. en 1929. Obtuvo su doctorado en Matemáticas en la Universidad de Columbia en 1939. 
Fue profesor de matemática a tiempo completo en el Brooklyn College de 1952 hasta su muerte, aunque había comenzado a enseñar en el Brooklyn College en 1928. Boyer fue instrumento e inspiración para la fundación de sección metropolitana de Nueva York de la History of Science Society. Fue «Miembro en Historia de Ciencia y Tecnología» de la Fundación John-Simon-Guggenheim de 1954. En 1978, su viuda Marjorie Duncan Nice, profesora de Historia, estableció el Premio Carl B. Boyer, otorgado anualmente a un estudiante no graduado de la Universidad de Columbia por el mejor ensayo en ciencias o matemáticas

Somov

El matemático ruso  Osip Somov asistió a la escuela secundaria en Moscú y luego ingresó a la Universidad de Moscú para estudiar matemáticas y física en la famosa Facultad de Física y Matemáticas. Se graduó en 1835 y continuó trabajando en su tesis de maestría (esencialmente equivalente a un doctorado). Durante este tiempo, escribió su primer trabajo matemático sobre ecuaciones algebraicas, Teoría de determinadas ecuaciones algebraicas de mayor grado, que se publicó en 1838 . En este artículo demostró:
... no solo un conocimiento profundo, sino también una habilidad extraordinaria para presentar los logros más recientes del análisis algebraico. Somov fue el primero en Rusia en desarrollar un enfoque geométrico de la mecánica teórica. Estudió la rotación de un cuerpo sólido sobre un punto, estudiando ejemplos que surgen del trabajo de Euler , Poinsot , Lagrange y Poisson . Otros temas que estudió Somov incluyeron funciones elípticas y su aplicación a la mecánica. Somov fue elegido como asociado de la Academia de Ciencias de San Petersburgo en 1857, convirtiéndose en académico en 1862 por la muerte de Mikhail Ostrogradski .

Huntington

Huntington thumbnail

El Matemático  estadounidense Edward  Vermilye Huntington,  en  un  artículo  de  1902  dedicado al sistema de los números reales, estableció la noción de categoricidad (Huntington la llamó suficiencia): Un conjunto de axiomas que conectan un conjunto de símbolos no definidos se dice que es  categórico si  entre  los  elementos  de  dos  colecciones  cualesquiera,  cada  una  de  las  cuales  contiene símbolos no definidos y satisface los axiomas, se puede establecer una correspondencia biunívoca para los  conceptos  no  definidos  que  preserve  las  relaciones  establecidas  por  los  axiomas,  esto es,  ambos  sistemas  son  isomorfos.  La  categoricidad  significa  así  que  las  diferentes interpretaciones  del  sistema  de  axiomas  difieren  únicamente  en  el  lenguaje.  La  categoricidad implica  otra  propiedad  que  Veblen  llamaba  disyuntiva  y  que  ahora  se  conoce  como completitud: Se  dice  que  un  sistema  de  axiomas  es  completo  si  es  imposible  añadir  otro  axioma  que  sea independiente  del  conjunto  dado  y  consistente  con  él.  Proporcionó  (1902)  conjuntos  de axiomas  para  distintas  disciplinas  matemáticas,  como  por  ejemplo, para el concepto de grupo abstracto y, más tarde, para los cuerpos. 

Tucker

El matemático inglés Robert Tucker fue ditor de los artículos de William Kingdon Clifford. Cincuenta y siete de los artículos de Clifford fueron recopilados y editados por Tucker y publicados en 1882 como Mathematical Papers. Tucker también escribió muchas biografías, incluidas las de Gauss, Sylvester, Chasles, Spottiswoode y Hirst, todas las cuales aparecieron en Nature. Pero, al igual que varios maestros de escuela en este momento, también hizo una contribución a la investigación en geometría. Escribió más de 40 artículos de investigación que se publicaron en las principales revistas. Estos artículos, aunque a veces no son de la más alta calidad, contienen una serie de ideas interesantes. Hill destaca especialmente para una mención especial su trabajo en el círculo de proporción triplicada,Círculos de Tucker y el cuadrilátero armónico

Compartir este post
Repost0

Artículos Recientes

  • Matemáticos del Día
    Pensar es moverse en el infinito. H.D.Lacordaire Matemáticos que han nacido o fallecido el día 29 de Enero Matemáticos nacidos este día: 1688 : Swedenborg 1761 : Mendoza y Ríos 1774: Olinthus Gregory 1810 : Kummer 1817 : Ferrel 1888 : Chapman 1928 : Joseph...
  • Matemáticos del Día
    No hay ciencia que hable de las armonías de la naturaleza con más claridad que las Matemáticas. P.Carus Matemáticos que han nacido o fallecido el día 28 de Enero Matemáticos nacidos este día: 1540 : van Ceulen 1608 : Borelli 1611 : Johannes Hevelius 1622...
  • Matemáticos del Día
    Los descubrimientos matemáticos, como las violetas en primavera en el bosque, tienen su temporada que ningún ser humano puede acelerar o retardar. J.Bolyai Matemáticos que han nacido o fallecido el día 27 de Enero Matemáticos nacidos este día: 1772 :...
  • Matemáticos del Día
    Con las teorías matemáticas ocurre como con el resto de las cosas: la belleza puede ser percibida, pero no explicada. A.Cayley Matemáticos que han nacido o fallecido el día 26 de Enero Matemáticos nacidos este día: 1799 : Clapeyron 1862 : Eliakim Moore...
  • Matemáticos del Día
    General, podríamos esperar cualquier cosa de vos menos lecciones de geometría ( a Napoleón) J.L. Lagrange Matemáticos que han nacido o fallecido el día 25 de Enero Matemáticos nacidos este día: 1627 : Boyle 1736 : Lagrange 1812 : Shanks 1843 : Schwarz...
  • Matemáticos del Día
    La reputación de un matemático reside en el número de pruebas erróneas que ha hecho A.S.Besicovitch Matemáticos que han nacido o fallecido el día 24 de Enero Matemáticos nacidos este día: 1679 : von Wolff 1798 : von Staudt 1814 : Colenso 1863 : Adler...
  • Matemáticos del Día
    ¡El infinito! Ninguna cuestión ha conmovido tan profundamente el espíritu humano D. Hilbert Matemáticos que han nacido o fallecido el día 23 de Enero Matemáticos nacidos este día: 1693 : Bilfinger 1719 : Landen 1806 : Minding 1840 : Abbe 1854 : Klug 1862...
  • Matemáticos del Día
    Simplificar, he ahí el principal secreto de la enseñanza A.Fouillée Matemáticos que han nacido o fallecido el día 22 de Enero Matemáticos nacidos este día: 1561 : Francis Bacon 1592 : Gassendi 1851: Edward Langley 1860: Robert Muirhead 1866 : Gustav de...