Overblog
Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

25 diciembre 2011 7 25 /12 /diciembre /2011 08:17

Olas rompiendo en una playa.

Un equipo integrado por cuatro matemáticos españoles y un estadounidense -que obtuvo en 1978 la medalla Fields- ha resuelto el problema de describir cómo se produce la ruptura de una ola. 

Según informa el Instituto de Ciencias Matemáticas (Icmat-CSIC), predecir cuándo se formará un tornado, cuándo romperá una ola o simplemente hacia dónde se moverá una gota sobre un plano son problemas tan difíciles como útiles, ya que si se resolvieran habría modelos de clima mucho más precisos y coches o aviones que consumirían mucho menos combustible.

El reto común a todos ellos es averiguar cómo se mueve un fluido, una pregunta a la que los matemáticos llevan enfrentándose desde el siglo XVII y que forma parte de los problemas llamados del milenio, cuya resolución se premia con un millón de dólares. 

"Nuestro resultado no resuelve el Problema del Milenio, pero las nuevas ideas que hemos desarrollado sí abren vías para acercarse a él", señala Diego Córdoba, investigador del Instituto de Ciencias Matemáticas, que recientemente ha obtenido el Premio Miguel Catalán para científicos menores de 40 años. 

Lo que el trabajo ahora publicado demuestra es que en las ecuaciones que hoy en día se usan para describir el movimiento de los fluidos puede formarse lo que los matemáticos llaman una singularidad. Las singularidades son lo que ocurre cuando rompe una ola, cuando se forma un tornado o cuando un fluido se vuelve turbulento. 

Sobre el papel, el fenómeno se traduce en que una de las variables que describen ese fluido, como su velocidad, su presión o su densidad, cambia de forma explosiva y alcanza un valor infinito. 

¿Por qué es necesario demostrar que las singularidades existen en las ecuaciones? Existen en el mundo real, y por tanto las ecuaciones que lo describen deben contemplarlas. Y esta es la primera vez  que se logra demostrar que efectivamente lo hacen, a pesar de que son ecuaciones ya muy antiguas. De ahí la relevancia del resultado obtenido por este grupo.

En 1755 Leonhard Euler escribió por primera vez las ecuaciones diferenciales que rigen el movimiento de un fluido llamado ideal, sin fricción en sus moléculas; casi un siglo más tarde Claude-Louis Navier y Gabriel Stokes introdujeron la fricción, la viscosidad, y llegaron a las ecuaciones de Navier-Stokes. Hoy estas ecuaciones son esenciales en los modelos de simulación de clima y en los que describen cómo fluye el aire en torno a las alas de un avión –entre otros muchos ejemplos-. Pero que las ecuaciones se usen no significa que se comprendan bien matemáticamente.

Los modelos se alimentan de soluciones siempre aproximadas, obtenidas gracias a la gran capacidad de cálculo de las computadoras. En realidad, las ecuaciones de Navier Stokes aún no se saben resolver de forma que informen con total certeza de cómo se comportará un fluido de ciertas características, y en determinadas condiciones, en un tiempo dado.

Con ese objetivo en el horizonte los matemáticos investigan las ecuaciones preguntándose, por ejemplo, si admiten o no singularidades.  “Son ecuaciones tan complejas que hasta el día de hoy era desconocida la existencia de singularidades. Es más, todavía no se han desarrollado  las herramientas matemáticas necesarias para capturar una visión global del fenómeno”, explica Córdoba.

Sin viscosidad y con frontera: diferencias con ‘el del milenio’

El problema planteado por el Instituto Clay pregunta si las soluciones para un fluido que en determinadas condiciones empieza a moverse de forma suave y laminar siempre implicarán, a medida que avance el tiempo, un flujo suave y laminar. Es decir, si el movimiento seguirá siendo regular, sin cambios bruscos –sin singularidades-.

La respuesta que da el trabajo ahora publicado es que no seguirá siendo regular, es decir, sí hay singularidades. Pero no vale para ganar el millón de dólares, porque el problema del milenio pone ciertas condiciones. Una es que debe considerarse la viscosidad, algo que no hace el grupo de Córdoba.

Y la otra diferencia son las condiciones de contorno: el fluido del problema del milenio carece de frontera, no está en contacto con ninguna otra sustancia -una condición que no se da en la realidad  cotidiana-. El fluido con el que han trabajado los autores del trabajo que ahora se publica, en cambio, sí tiene un contorno, una frontera con otra sustancia –el agua con el aire de la atmósfera, por ejemplo-. En ese sentido, el problema ahora resuelto podría considerarse en principio más difícil que el planteado por el Instituto Clay.

“Sí, en principio nuestro problema es más difícil”, dice Córdoba, “pero nos dimos cuenta de cómo podría ser la singularidad en la frontera; la singularidad que encontramos está precisamente en la interfase entre el fluido y el vacío”.

La singularidad que han encontrado es una singularidad de tipo splash: una singularidad en que la interfase se toca a sí misma en un punto en tiempo finito, o dicho de otra forma, “el fenómeno que uno observa en la  playa al ver las olas romper, en el cual la ola gira sobre sí misma y se toca”, explica Córdoba.

Así, el grupo no gana el millón de dólares pero logra un avance importante en la comprensión de las ecuaciones de Navier-Stokes y de Euler, un problema en el que la comunidad matemática lleva siglos trabajando y con múltiples aplicaciones en la vida cotidiana.

Compartir este post
Repost0

Artículos Recientes

  • Matemáticos del Día
    Simplificar, he ahí el principal secreto de la enseñanza A.Fouillée Matemáticos que han nacido o fallecido el día 22 de Enero Matemáticos nacidos este día: 1561 : Francis Bacon 1592 : Gassendi 1851: Edward Langley 1860: Robert Muirhead 1866 : Gustav de...
  • Matemáticos del Día
    Toda educación científica que no se inicia con las matemáticas es imperfecta en su base A.Comte Matemáticos que han nacido o fallecido el día 21 de Enero Matemáticos nacidos este día: 1793 : Olivier 1846 : Schoute 1860 : David Eugene Smith 1874 : Baire...
  • Insatisfacción matemática
  • Matemáticos del Día
    El ignorante afirma, el sabio duda y reflexiona Aristóteles Matemáticos que han nacido o fallecido el día 20 de Enero Matemáticos nacidos este día: 1573 : Mayr 1775 : Ampère 1831 : Routh 1895 : Szegő 1904 : Caccioppoli 1920: Edwin Hewitt 1937 : Knopfmacher...
  • Matematicos del Día
    El mundo está cada vez más dominado por la matemática Rambaud Matemáticos que han nacido o fallecido el día 19 de Enero Matemáticos nacidos este día: 1781 : Bidone 1833 : Clebsch 1851 : Czuber 1865 : Macdonald 1877 : Gentle 1879 : Fubini 1908 : Kurosh...
  • Matemáticos del Día
    Conocí a un hombre una vez que me dijo que lejos de creer en la raíz cuadrada de menos uno, en lo que no creía era en menos uno. Esto es, en todo caso una actitud coherente Edward Titchmarsh Matemáticos que han nacido o fallecido el día 18 de Enero Matemáticos...
  • Teorema del día
    LEY DE RECIPROCIDAD CUADRÁTICA El primero que ofrece de manera implícita una parte de la primera ley complementaria de la L.R.C. es Diofanto de Alejandría, en su obra Arithmetica. Luego, Fermat motivado por este libro encuentra parte esencial de la primera...
  • Matemáticos del Día
    Siempre que puedas, cuenta F.Galton Matemáticos que han nacido o fallecido el día 17 de Enero Matemáticos nacidos este día: 1647 : Elisabetha Koopman 1706 : Benjamin Franklin 1847 : Zhukovsky 1858 : Koenigs 1868 : Couturat 1889 : Fowler 1900 : Collingwood...