Overblog
Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

3 octubre 2011 1 03 /10 /octubre /2011 05:00

El Sol tiene el tamaño de un pie humano

Heráclito

 Matemáticos que han nacido o fallecido el día 3 de Octubre

      

Matemáticos nacidos este día:

1863 : Zaremba
1888 : Williams
1889 : Ralph Jeffery
1944 : Deligne

Matemáticos fallecidos este día:

1891 : Lucas
1914 : Gateaux
1951 : William Leslie Thomson
2006 : Crank
Zaremba

El ingeniero polaco Stanislaw Zaremba estudió matemáticas en  París, doctorándose en la Sorbonne. Como tema para su doctorado, Zaremba buscó desarrollarlo sobre las ideas introducidas por Riemann en 1861. Su tesis doctoral Sur un problème concernant l'état calorifique d'un corp homogène indéfini fue presentada en 1889. Zaremba hizo muchos contactos con matemáticos de la escuela Francesa en este tiempo que lo proveerían de colaboradores internacionales después de volver a Polonia. En particular colaboró con Painlevé y Goursat.

Gran parte del trabajo de la investigación de Zaremba fue en ecuaciones diferenciales parciales y en la teoría potencial. También realizó importantes contribuciones a la física matemática y a la cristalografía.

Alrededor 1905 realizó contribuciones importantes al estudio de los materiales visco-elásticos. Demostró como hacer cálculos tensoriales con valor de tensión que eran invariables para alargamientos y fueran así apropiados para el uso en cuanto a las relaciones entre la historia de la tensión y la historia de la deformación de un material. Estudió las ecuaciones elípticas y en particular contribuyó al principio de Dirichlet. Su contribución es descripta como se indica a continuación:

En el trabajo del eminente matemático Polaco Stanislaw Zaremba (1863 - 1942), el problema de un desarrollo axiomático de la mecánica clásica juega un papel importante, como es bien conocido, este problema constituye parte del Sexto Problema de Hilbert. Comenzando con los trabajos de G Hamel, esta pregunta ha sido estudiada por muchos especialistas en la mecánica, matemáticas y lógica.

Lebesgue, alguien quien raramente colmó de alabanzas a sus colegas, le rindió tributo en 1930 cuando Zaremba recibió un grado honorario desde la Universidad de Jagiellonian en Kraków :

La actividad científica de Zaremba influyó tantas áreas de investigación que su nombre no puede ser desconocido por nadie interesado en las matemáticas. Sin embargo, parece que el poder de los métodos que creo, y la originalidad de su imaginación, puede apreciarse mejor por aquellos que trabajan en el área de física matemática. Allí él mostró su estilo y su nombre se imprimió para siempre.

Para la misma ocasión en 1930, Hadamard también describió las contribuciones de Zaremba:

Uno no puede evitar mencionar las ideas que él inspiró en el dominio de la investigación que pertenece a esos campos a los que la ciencia francesa del siglo presente ha dedicado el mayor esfuerzo. La profunda inducción que se le debe, ha transformado recientemente los fundamentos de la teoría potencial e inmediatamente llegó a ser el punto de partida de investigación de matemáticos jóvenes de la escuela francesa. Esta inducción, en un grado verdaderamente inesperado en ese campo, es marcada por la simplicidad y la elegancia que caracteriza las ideas profunda y pertinentemente tomadas de la naturaleza de las cosas. Y en lo que concierne a mi especialidad, por qué, como podría olvidar los espléndidos resultados en el dominio de los problemas límites y de las funciones armónicas, así como también de las ecuaciones hiperbólicas, investigar por medio de la una nueva trayectoria que abrió a lo largo de la cual el conocimiento contemporáneo seguirá en el futuro próximo.

Deligne

El matemático belga Pierre René Deligne ha trabajado en Geometría Algebráica, Topología Algebráica, Los 23 problemas de Hilbert, Teoría de Hodge, Teoría de Galois, representaciones de Grupos Algebráicos.

Asistió a la Universidad Libre de Bruselas, donde se licenció en Matemática en 1966. Se doctoró en 1968. Trabajó con Alexander Grothendieck en el Institut des Hautes Études Scientifiques (IHÉS), cerca de París. Más tarde colaboraría con Jean-Pierre Serre en el campo de las L-funciones. Igualmente, trabajaría con David Mumford en una nueva descripción del espacio de moduli para las curvas, algo que más tarde sería utilizado para el desarrollo de la teoría de cuerdas.

Desde 1970, Deligne fue miembro permanente de la plantilla del IHÉS. En este momento desarrollaría sus trabajos más relevantes en busca de hallar una prueba para la conjetura de Weil. Para ello, cooperaría con George Lusztig y con Anatol Rapoport. Conseguiría probar la conjetura en 1973, y recibiría la medalla Fields en 1978. En 1984 se trasladaría al Institute for Advanced Study de Princeton. Más tarde, en 1988, recibiría el premio Crafoord de la Academia Real Sueca de las Ciencias en 1988, junto Alexander Grothendieck, Simon Donaldson, y Shing-Tung Yau , y en 2004, el Premio Balzan.

 

Lucas

 

      El matemático francés Edouard Lucas trabajó en geometría superior extendiendo la geometría euclidea no elemental, la que emerge con el estudio de las transformaciones (homotecias, inversiones...) y la geometría proyectiva con sus transformaciones homográficas y homológicas.

También publicó, en 1891,  un importante tratado sobre la aritmética de Diofanto y la teoría de números

 

Compartir este post
Repost0

Artículos Recientes

  • Matemáticos del Día
    Simplificar, he ahí el principal secreto de la enseñanza A.Fouillée Matemáticos que han nacido o fallecido el día 22 de Enero Matemáticos nacidos este día: 1561 : Francis Bacon 1592 : Gassendi 1851: Edward Langley 1860: Robert Muirhead 1866 : Gustav de...
  • Matemáticos del Día
    Toda educación científica que no se inicia con las matemáticas es imperfecta en su base A.Comte Matemáticos que han nacido o fallecido el día 21 de Enero Matemáticos nacidos este día: 1793 : Olivier 1846 : Schoute 1860 : David Eugene Smith 1874 : Baire...
  • Insatisfacción matemática
  • Matemáticos del Día
    El ignorante afirma, el sabio duda y reflexiona Aristóteles Matemáticos que han nacido o fallecido el día 20 de Enero Matemáticos nacidos este día: 1573 : Mayr 1775 : Ampère 1831 : Routh 1895 : Szegő 1904 : Caccioppoli 1920: Edwin Hewitt 1937 : Knopfmacher...
  • Matematicos del Día
    El mundo está cada vez más dominado por la matemática Rambaud Matemáticos que han nacido o fallecido el día 19 de Enero Matemáticos nacidos este día: 1781 : Bidone 1833 : Clebsch 1851 : Czuber 1865 : Macdonald 1877 : Gentle 1879 : Fubini 1908 : Kurosh...
  • Matemáticos del Día
    Conocí a un hombre una vez que me dijo que lejos de creer en la raíz cuadrada de menos uno, en lo que no creía era en menos uno. Esto es, en todo caso una actitud coherente Edward Titchmarsh Matemáticos que han nacido o fallecido el día 18 de Enero Matemáticos...
  • Teorema del día
    LEY DE RECIPROCIDAD CUADRÁTICA El primero que ofrece de manera implícita una parte de la primera ley complementaria de la L.R.C. es Diofanto de Alejandría, en su obra Arithmetica. Luego, Fermat motivado por este libro encuentra parte esencial de la primera...
  • Matemáticos del Día
    Siempre que puedas, cuenta F.Galton Matemáticos que han nacido o fallecido el día 17 de Enero Matemáticos nacidos este día: 1647 : Elisabetha Koopman 1706 : Benjamin Franklin 1847 : Zhukovsky 1858 : Koenigs 1868 : Couturat 1889 : Fowler 1900 : Collingwood...