Overblog
Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

20 septiembre 2020 7 20 /09 /septiembre /2020 05:05
  1. Un matemático es alguien que puede tomar una taza de café y convertirla en una teoría

P.Erdös

Matemáticos que han nacido o fallecido el día 20 de Septiembre

      

Matemáticos nacidos este día:

1674 : Manfredi
1842 : Brill
1861 : Cole
1874 : Mihály Bauer
1887 : Hecke
1906 : Faddeeva
1915: Lee Lorch 
1922 : Warga
1925 : Stewartson

1928: Donald Higman

Matemáticos fallecidos este día:

1804 : Mechain
1882 : Briot
1930 : Pasch
1996 : Erdős
  • Hoy es el ducentésimo sexagésimo cuarto día del año.
  • 264 es un número Harsard o de Niven pues es divisible por la suma de sus dígitos. Estos números fueron definidos por D. R. Kaprekar, un matemático indio. La palabra "Harshad" proviene del sánscrito, que significa gran alegría. Número de Niven toma su nombre de Ivan Morton Niven, un matemático canadiense y norteamericano, que presentó un artículo en 1997. Todos los números entre cero y la base, son números Harshad.
  • 2642=69696 es un número palíndromo o capicua.
  • 264 es el mayor número cuyo cuadrado es ondulado (ababab...).
  • 264 es un número abundante pues es menor que la suma de sus divisores propios.
  • 264 es un número odioso pues su expresión binaria contiene un número impar de unos.
  • 264 es un número práctico pues todos los enteros positivos menores que él se pueden escribir como sumas de distintos divisores de 264

Tal día como hoy del año:

  • 1623, Schickard escribe a Kepler sobre la nueva máquina de calcular de Schickard:
  • Lo que has hecho por cálculo, lo he intentado hacer por medio de la mecánica. He concebido una máquina que consta de once ruedas dentadas completas y seis incompletas; calcula instantánea y automáticamente a partir de números dados, ya que suma, resta, multiplica y divide. Disfrutarías viendo cómo la máquina acumula y transporta de forma espontánea una decena o un centenar hacia la izquierda y, al revés, cómo hace lo contrario si está restando ... "
  • Mucho antes de Pascal y Leibniz, Schickard inventó una máquina de calcular, la 'Rechenuhr', en 1623
  • 1786, Galvani hizo el experimento crucial sobre la "electricidad animal" cuando demostró que una rana muerta y "preparada" saltaba sin una fuente eléctrica externa, simplemente tocando músculos y nervios con un arco metálico
  • 1948, John von Neumann dio su primera conferencia sobre la teoría de los autómatas. En esta conferencia, que se publicó más tarde, llamó la atención sobre la importancia fundamental de la Máquina Universal de Turing. 
  • 1954, Harlan Herrick de IBM ejecuta con éxito el primer programa FORTRAN 
 Frank Nelson Cole

 

El matemático americano Frank Nelson Cole es conocido por haber factorizado el número de Mersenne2^67-1 (M67).

En el transcurso de una conferencia ante los miembros de la  American Mathematical Society, cole, sin pronunciar una palabra  calculó el valor de M67 hasta obtener 147 573 952 589 676 412 927

En el otro lado de la pizarra  calculó, a mano : 193 702 721 x 761 838  257 287 obteniendo el mismo resultado.

Cole admitió que esta factorización le había costado los domingos de tres años. 

Manfredi 

Eustachio Manfredi.jpg

El matemático , astrónomo y poeta italiano Eustachio Manfredi obtuvo la cátedra de matemáticas de la Universidad de Bolonia en 1699.El 29 de noviembre 1707, junto con Vittorio Francesco Stancari, descubrió el cometa C / W1 1707.

Fue miembro de la Real Academia de Ciencias en París desde 1726 y de la Royal Society de Londres desde 1729 

El asteroide 13225 Manfredi fue nombrado en honor de Eustachio Manfredi y sus dos hermanos Gabriel y Heráclito. 

Costituye para él "la primera demostración, aunque no buscada, de la revolución de la Tierra alrededor del Sol, y por lo tanto la realidad de un sistema heliocéntrico".  Como resultado de este descubrimiento, la Iglesia reconoció la calidad científica de sistema Galileo.

Paul Erdös, el matemático errante

El matemático húngaro Paul Erdös, hijo de matemáticos, a los 21 años dio una prueba de la conjetura de Bertrand, según la cual: Para todo natural n mayor o igual a 2, existe un número primo entre n y 2n

Su vida transcurrió de viaje en viaje, sin casa, viajaba siempre con dos maletas de universidad en universidad. Huyendo del nazismo emigró a Estados Unidos. Acusado de simpatizar con el marxismo en la época del macartanismo, se expatrío a Israel. Posteriormente regresó a USA

Sus trabajos, mas de 1500 artículos, versan sobre cálculo de probabilidades, más concretamente sobre teoría aditiva de números, teoría de grafos, distribución de los números primos ... 

Su verdadera pasión fue la teoría de números, que le fascinaba por ser, según sus palabras, independiente del universo; y especialmente los números primos. Una de sus grandes preocupaciones fue la distribución de los primos dentro de los enteros. El teorema de los números primos afirma que la densidad de primos menores que x tiende a (x/ln(x)). Esto fue conjeturado por Gauss, y fue demostrado con métodos muy potentes del análisis, por Jaques Hadamard (1865-1943) y Charles de la Vallée Poussin (1866-1950).

En 1946, Erdös y Atle Selberd (Medalla Fields 1950) obtuvieron una demostración que no recurría a métodos superiores del análisis. Era una demostración elemental, que no es lo mismo que sencilla. Este tipo de demostraciones elementales que no recurrían a los métodos superiores del cálculo diferencial e integral y de variable compleja, sino que se mantenía en los terrenos de la teoría de números, eran las que consideraba Erdös las ideales y a las que se dedicó mayormente. Aparte de la teoría de números, abordó temas importantes y difíciles en el área de la combinatoria, teoría de conjuntos, análisis clásico, geometría discreta, topología de conjuntos... extendiéndose a muchas otras áreas, entre ellas: probabilidad, topología, teoría de grupos, funciones complejas. 

von Brill

El matemático alemán Alexander von Brill, sobrino de Christian Wiener, estudió en Karlsruhe, donde fue instruido por Clebsch, que le dirigió su tesis.

En 1869, Brill es nombrado profesor de matemáticas en la Technische Hochschule de Munich. Allí tuvo de compañero a Klein, ambos impartieron cursos avanzados a un gran número de estudiantes excelentes. Brill y Klein tenían un gran interés en la enseñanza y Brill, como Klein , participó en el movimiento de reforma de la enseñanza de las matemáticas. Brill, en particular,  fue el iniciador de la utilización de modelos de figuras geométricas en la enseñanza, muchos modelos han sido elaborados bajo su dirección.

Brill enseñó a una colección de estudiantes de gran talento, como  Hurwitz , von Dyck, Rohn, Runge, Planck, Bianchi y Ricci-Curbastro

Contribuyó al estudio de la geometría algebraica, tratando de llevar el rigor de álgebra en el estudio de las curvas. En 1874 publicó un trabajo conjunto con Max Noether en las propiedades de las funciones algebraicas que son invariantes bajo las transformaciones birracionales. Su trabajo permitió que la noción de género de una curva, introducido por Clebsch , extendierá a las curvas singulares y no singulares. En 1894 escribió, también en colaboración con Max Noether, un estudio muy importante del desarrollo de la teoría de funciones algebraicas. 

Brill también escribió sobre  determinantes, funciones elípticas, curvas y superficies especiales. Escribió artículos sobre la metodología de las matemáticas y la mecánica teórica. A los 87 años escribió un libro sobre la astronomía de Kepler

Hecke

El matemático alemán Erich Hecke obtuvo su doctorado en Göttingen , bajo la supervisión de David Hilbert . Kurt Reidemeister y Heinrich Behnke se encontraban entre sus estudiantes.

Sus primeros trabajos incluyen el establecimiento de la ecuación funcional para la función zeta de Dedekind , con una prueba basada en las funciones theta . El método extendido a la L-funciones asociadas a una clase de caracteres ahora se conoce como caracteres Hecke, por ejemplo las  L-funciones son ahora conocidos como Hecke L-funciones . Dedicó la mayor parte de su investigación a la teoría de las formas modulares , la creación de la teoría general de las formas cúspide ( holomorfas , para GL (2)).

Trabajó en la teoría analítica de números, donde continuó el trabajo de Riemann , DedekindHeinrich Weber . La multiplicación compleja y formas modulares habían sido tratadas en el siglo XIX por Kronecker y Heinrich Weber , quien descubrió su relación con la teoría de la clase de campo. Para su trabajo de doctorado,  Hilbert le sugiere que extienda las ideas de Kronecker de curvas de género 2. Aunque Hecke logró importantes resultados siguiendo esta línea de investigación, consideró que sus intentos habían sido infructuosos. Sin embargo, fue un gran éxito en el sentido de que los resultados obtenidos le sirvieron  para llevarle a más descubrimientos importantes.

Mechain

El matemático e ingeniero francés Pierre FranÇois Andre Mechaincomenzó su carrera con la construcción de cartas marítimas por invitación de su amigo, el astónomo de Lalande.

En 1781 descubre dos cometas y calcula su trayectoria. Gacias a un potente telescopio construido por él, el astrónomo inglés WilliansHerchel descubre un nuevo cuerpo celeste que cree que es un cometa. Mechain mostrará que se trata de un planeta: Urano.

Mechain trabajó, junto a Legendre y Cassini, en el cálculo de la longitud del obsevatorio de Paris respecto a Greenwich.

Mechain realizó, junto a Delambre, la medida por triangulación del meridiano Dunquerque - Rodas - Barcelona con el fin de establecer el metro como la diezmillonésima parte de un cuadrante de meridiano terrestre

En matemáticas, Mechain publicó unos artículos sobre la integración de ecuaciones en derivadas parciales y sobre las curvas y superficies algebraicas de segundo grado.

Briot

Resultado de imagen de Charles Briot

El matemático francés Charles Auguste Briot fue el responsable de importantes contribuciones  en el análisis, calor, luz y electricidad. A pesar de perder el movimiento del brazo debido a un accidente en su niñez, nunca dejó de ser un maestro.

En 1838, un año después de su llegada a París, comenzó a estudiar en la Ecole Normale Supérieure (1838), donde obtuvo un doctorado (1842) con un trabajo sobre la órbita de un cuerpo sólido alrededor de un punto fijo. Se convirtió en profesor en la Orleans Liceo y luego en la Universidad de Lyon, donde se reunió con su amigo de infancia Bouquet  , quien hizo un trabajo importante en análisis.

Enseñó cálculo, mecánica y  astronomía, especialmente en la Escuela Politécnica y la Faculté des Sciences. Briot escribió muchos libros importantes en  educación, y recibió muchos honores por su trabajo. Junto  con  Bouquet  introdujeron  el  término  “holomorfa”  en  lugar  de  synectique (término  introducido  por  Cauchy)  para  la  función  compleja  univalente  (función  monódroma) y  con  una  sola  derivada  para  cada  z  (función  monógena),  que  nunca  es  infinita,  y “meromorfa”  si  la  función  poseía  únicamente  polos  en  el  dominio. También  junto  con  Bouquet  simplificaron  el  método,  que  Cauchy  llamó  cálculo  de  límites,  para  establecer  la existencia  de  soluciones para ecuaciones diferenciales, y cuya versión se convirtió en la habitual. También iniciaron el  estudio  de  las  soluciones  de  las  ecuaciones  diferenciales  en los  entornos  de  los  puntos  singulares.  Publicó junto con Bouquet, ser el primer manual sobre esta materia

Pash

El matemático alemán Moritz Pasch profesor en la Universidad de Giessen, contribuyó a la fundamentación rigurosa de la geometría, mediante una concepción axiomática que expuso en su obra Lecciones sobre la moderna geometría.

Pash descubrió la imposibilidad de probar, solo con los postulados de Euclides, la proposición:

Dados cuatro puntos alineados A, B, C, D tales que B está entra A y C; C entre B y D entonces B está entre A y D.

Postuló, de manera equivalente, Si una recta es secante a un lado de un triángulo, entonces es secante a uno de los otros dos.

Bauer

El matemático húngaro Mihály Bauer era de una familia judía húngara sufrió antisemitismo durante la mayor parte de su vida. Estudió en la Universidad Técnica de Budapest, donde trabajó como maestro a partir de los 16 años. Fue alumno de Gusztáv Rados y Julius König , y fue con Rados con quien colaboró ​​en la redacción de su primer artículo a la edad de 18 años. Artículos de investigación aceptados para su publicación en 1894, se le otorgó una beca para pasar el año académico 1895-96 en el extranjero.
Bauer publicó dos documentos importantes en 1903. Estos fueron Über einen Satz von Kronecker y Über zusammengesetzte Körper. Estos documentos hicieron una contribución importante a la pregunta de Kronecker sobre la caracterización de los campos numéricos por el comportamiento de división de sus números primos. Szamuely escribe "Kronecker llamó a esto un "problema de valor límite" ( problema de Randwert ) debido a una analogía ( vaga ) con el teorema de Cauchy que calcula los valores de una función analítica en un disco a partir de sus valores tomados en el límite".
Lo que Bauer demostró fue que si dos extensiones finitas de Galois de los racionales tienen la propiedad de que, con a lo sumo un número finito de excepciones, los mismos primos se dividen por completo en ambas extensiones, entonces las dos extensiones son iguales. En 1922 recibió el primer premio Gyula König creado por La Sociedad Matemática y Física de Eötvös Lóránd  en honor a König, quien había muerto en 1913. 

 

Compartir este post
Repost0

Artículos Recientes

  • Matemáticos del Día
    La historia del mundo es la suma de aquello que hubiera sido evitable B.Russell Matemáticos que han nacido o fallecido el día 2 de Febrero Matemáticos nacidos este día: 1522 : Ferrari 1765 : Osipovsky 1786 : Binet 1793 : Hopkins 1842 : Sokhotsky 1849...
  • Matemáticos del Día
    Si me siento infeliz, hago matemáticas para ser feliz. Si me siento feliz, hago matemáticas para seguir siendo feliz A.Renyi Matemáticos que han nacido o fallecido el día 1 de Febrero Matemáticos nacidos este día: 1840 : Whitworth 1888 : Hermann Kober...
  • Matemáticos del Día
    Ningún tema pierde tanto cuando se le divorcia de su historia como las matemáticas E.T.Bell Matemáticos que han nacido o fallecido el día 31 de Enero Matemáticos nacidos este día: 1715 : Giovanni Fagnano 1841 : Loyd 1886 : Watson 1896 : Janovskaja 1914...
  • Matemáticos del Día
    El ojo del matemático es un espejo místico, que no sólo refleja sino que también la absorbe . F.Googol Matemáticos que han nacido o fallecido el día 30 de Enero Matemáticos nacidos este día: 1619 : Ricci 1755 : Fuss 1805 : Sang 1865 : Landsberg 1870:...
  • Matemáticos del Día
    Pensar es moverse en el infinito. H.D.Lacordaire Matemáticos que han nacido o fallecido el día 29 de Enero Matemáticos nacidos este día: 1688 : Swedenborg 1761 : Mendoza y Ríos 1774: Olinthus Gregory 1810 : Kummer 1817 : Ferrel 1888 : Chapman 1928 : Joseph...
  • Matemáticos del Día
    No hay ciencia que hable de las armonías de la naturaleza con más claridad que las Matemáticas. P.Carus Matemáticos que han nacido o fallecido el día 28 de Enero Matemáticos nacidos este día: 1540 : van Ceulen 1608 : Borelli 1611 : Johannes Hevelius 1622...
  • Matemáticos del Día
    Los descubrimientos matemáticos, como las violetas en primavera en el bosque, tienen su temporada que ningún ser humano puede acelerar o retardar. J.Bolyai Matemáticos que han nacido o fallecido el día 27 de Enero Matemáticos nacidos este día: 1772 :...
  • Matemáticos del Día
    Con las teorías matemáticas ocurre como con el resto de las cosas: la belleza puede ser percibida, pero no explicada. A.Cayley Matemáticos que han nacido o fallecido el día 26 de Enero Matemáticos nacidos este día: 1799 : Clapeyron 1862 : Eliakim Moore...