Overblog
Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

27 junio 2016 1 27 /06 /junio /2016 05:02

No entiendo lo que dice, pero solicito poder no estar de acuerdo contigo

A.De Morgan

Matemáticos que han nacido o fallecido el día 27 de Junio

      

Matemáticos nacidos este día:

1767 : Bouvard
1806 : De Morgan
1826 : Crofton
1834 : Erastus De Forest
1850 : Gram
1853 : Kerr
1868 : Tweedie
1899 : Lois Griffiths
1915 : Povzner
1940 : Quillen

Matemáticos fallecidos este día:

1831 : Germain
1880 : Borchardt
1883 : Spottiswoode
1952 : Dehn
1975 : Geoffrey Taylor
  • Hoy es el centésimo septuagésimo noveno día del año.
  • Hay 179 días pares en el año.
  • 179 es un número primo cuyo cuadrado tiene los dígitos del 0 al 4.
  • 1793 tiene todas sus cifras impares
  • 179 es un número libre de cuadrados
  • 179 es un número primo gemelo pues existe otro número primo (181) cuya diferencia con 179 es 2
  • 179 es un número deficiente pues es mayor que la suma de sus divisores propios
  • 179 es un número libre de cuadrados pues en su descomposición factorial no se repite ningún factor.
Auguste De Morgan

 

El matemático británico Augustus De Morgan estudió en el Trinity College, donde la presencia de Babbage y el algebrista Peacock le sensibilizaron con el álgebra y la lógica. Estudió inicialmente derecho pero se postuló finalmente por las matemáticas.

En el colegio De Morgan no destacó y, debido a sus discapacidad,perdida de la visión de su ojo derecho,... no se unió en los deportes con los otros niños, y fue hecho victima de crueles burlas de algunos de sus compañeros.

En 1827 (a la edad de 21) se presentó para la cátedra de matemáticas en el recién fundado University College de Londres, y a pesar de no tener publicaciones matemáticas fue designado. En 1928 De Morgan se convierte en el primer catedrático de matemáticas del Unversity College. Dio su clase inaugural sobre 'En el estudio de las matemáticas'.

De Morgan tuvo que renunciar a su cargo, por una cuestión de principios, en 1831. Fue designado de nuevo en 1836 y se mantuvo hasta 1866 cuando tuvo que renunciar por segunda vez, de nuevo por una cuestión de principios.

Su libro Elementos de aritmética fue su segunda publicación y vería múltiples ediciones. En 1838 define e introduce el término 'inducción matemática' dotando de una base rigurosa a un proceso que se ha había utilizado sin claridad hasta entonces. El término apareció por primera vez en el artículo de De Morgan en la Enciclopedia Penny titulado Inducción (Matemáticas). En 1849 publicó Trigonometría y álgebra doble en el cual dio una interpretación geométrica a los números complejos. El reconoció la naturaleza puramente simbólica del álgebra, y fue consciente de la existencia de otras álgebras diferentes de la ordinaria. Introdujo las leyes de De Morgan y su gran contribución es como reformador de la lógica matemática.De Morgan se carteó con Charles Babbage y dio clases particulares a Lady Lovelace quien, se reivindica, escribió el primer programa de ordenador para Babbage. De Morgan también se escribió con Hamilton y como él intentó extender el álgebra doble a la tercera dimensión. En una carta a Hamilton, De Morgan escribe de su correspondencia con Hamilton y con William Hamilton:

Sea por usted conocido que he descubierto que usted y Sir W.H. son para mi recíprocos polares (intelectual y moralmente, el baronet escocés es un oso polar, y usted, diría yo, es un caballero polar). Cuando envío algo de mi investigacion a Edimburgo, el W.H. de ese tipo dice que lo he copiado de él. Cuando le envío algo a usted, lo recibe, lo generaliza de un vistazo, lo presenta generalizado a la sociedad en general, y me hace el segundo descubridor de un teorema conocido.

Es el fundador, junto Boole, de la lógica moderna.. Sus trabajos fueron brillantemente mejorados por Boole y, más recientemente, por Frege y Peirce.

Formuló  las conocidas leyes de De Morgan :

La negación de la disyunción de dos proposiciones es equivalente a la conjunción de las negaciones de ambas proposiciones

La negación de la conjunción de dos proposiciones es equivalente a la disyunción de las negaciones de ambas proposiciones. 

Bouvard

El astrónomo francés Alexis Bouvard es conocido por descubrir cometas y la fabricación de tablas de datos de Júpiter, Saturno y Urano. Mientras que las dos primeras tablas fueron muy exitosas, la última mostró serios errores con respecto a las futuras observaciones. Esto llevó a Bouvard a formular la hipótesis de la existencia de un octavo planeta que afecte a la órbita de Urano. Neptuno fue posicionado posteriormente por John Couch Adams y Urbain Le Verrier después de su muerte.

Bouvard fue director del Observatorio de París desde 1822 hasta su muerte, en 1843.

En Australia un cabo conocido como Cabo Bouvard fue llamado en su nombre cuando los marineros franceses descubrieron Australia Occidental. Bouvard es también el nombre de una pequeña ciudad australiana en el sur de Perth.

Gram

Al matemático amenricano Jorgen Pedersen Gram se le deben resultados en teoría de números, sobre espacios los vectoriales de dimensión finita y los problemas de aproximación de funciones donde, siguiendo las investigaciones de Tchebychev , introdujo su método de ortonormalización de una base de un espacio vectorial, llamado de Gram - Schmidt pues el matemático alemán Erhard Schmidt enunció el mismo resultado años más tarde. 

Quillen

El matemático americano Daniel Grey Quillen recibió el grado de Doctor por una tesis sobre ecuaciones diferenciales parciales en 1964 titulada Propiedades formales de sistemas sobre-determinados de ecuaciones diferenciales parciales Lineales.
En los años 60, Quillen describió como definir la homología de los objetos simpliciales de muchas categorías diferentes, incluyendo conjuntos, algebras sobre un anillo y algebras inestables sobre el álgebra de Steenrod.
Frank Adams había formulado una conjetura en la teoría homotópica sobre la cual Quillen trabajó. Quillen se aproximó a la conjetura Adams con dos aproximaciones muy diferentes, principalmente usando técnicas de geometría algebraica y también usando técnicas de la teoría de representación modular de grupos. Ambas aproximaciones probaron ser exitosas: la prueba en la primera aproximación se completo por uno de los estudiantes de Quillen; la segunda llevó a una prueba a Quillen.
Las técnicas que involucran la teoría de representación modular de grupos fueron usadas por Quillen con gran efecto en un trabajo posterior de cohomología de grupos y teoría K algebraica. El trabajo en cohomología llevó a Quillen a dar un teorema de estructura para anillos de cohomología de módulo p de grupos finitos, este teorema de estructura resolvió varias preguntas abiertas en el área.
Quillen recibió la Medalla Fields en el Congreso Internacional de Matemáticas llevado a cabo en Helsinki en 1978. Recibió el premio como el arquitecto principal de la teoría K algebraica avanzada en 1972, una nueva herramienta que exitosamente usó métodos e ideas geométricos y topológicos para formular y resolver problemas importantes del álgebra, particularmente de la teoría de anillos y la teoría de módulos.
La teoría algebraica K es una extensión a los anillos conmutativos de las ideas de Grothendieck. Estas ideas fueron usadas por Atiyah y Hirzenbruch cuando crearon la Teoría K topológica

 El talento matemático tiende a expresarse ya sea resolviendo problemas o construyendo teorías. Solamente en casos especiales como el de Quillen uno tiene la satisfacción de ver problemas duros y concretos resueltos con ideas generales de gran fuerza y ámbito y por la unificación de métodos de diversos campos de las matemáticas. Quillen ha tenido un profundo impacto en las percepciones y en los mismos hábitos de pensamiento de toda una generación de algebristas y topólogos jóvenes. Uno estudia su trabajo no solo para informarse, si no también para edificarse. 

Sophie Germain

 

La matemática francesa Sophie Germain se apasionó por los trabajos de Arquimedes leyendo sus libros en la biblioteca de su padre lo que le incitó a seguir sus estudios aunque fue rechazada en la Ecole, reservada sólo a hombres.

Con el seudónimo de M. Le Blanc tuvo correspondencia con Gauss y Lagrange, que descubrió la suplantación.

Sophie Germain, seguramente la matemática más brillante de la historia, que llegó a suplantar a un antiguo alumno para poder estudiar en la escuela politécnica de París. Tras presentar sus trabajos, Lagrange quiso conocer al joven que tanto le había impresionado y, al descubrir que aquel ingenioso alumno era una mujer autodidacta, decidió darle clases privadas a partir de ese encuentro. Más tarde, Sophie realizó una aportación al Último teorema de Fermat que impresionó hasta a Gauss, el cual no supo quién era realmente su colega francés hasta que Sophie intercedió por él, ante Napoleón, para velar por su seguridad.

A pesar de que en el siglo XIX, las mujeres seguían siendo ignoradas en los ámbitos científicos, Sophie fue premiada por una de sus memorias en la Academia de Ciencias de París

En aritmética nos ha dejado el teorema de Sophie Germain: Para todo natural estrictamente mayor que uno, n^4+4 no es primo; y los números primos de Sophie Germain

Estudió también la elasticidad de los cuerpos y la curvatura de superficies.

Dehn

El matemático alemán Max Wilhelm Dehn, cuya tesis fue supervisada por el mismo Hilbert, resolvió el tercer problema de Hilbert.

En dimensión 2, cuando dos polígonos tienen la misma área, siempre es posible recortar uno en polígonos para obtener el otro, es el teorema de Wallace - Bolyai - Gerwein. El tercer problema de Hilbert plantea la misma cuestión para dimensión tres: Dados dos poliedros del mismo volumen, ¿es posible cortar uno de ellos en poliedros que se puedan juntar para formar el segundo?

Dehn demostró que no siempre es posible. Para ello introdujo un factor, hoy conocido como invariante de Dehn, que debe ser el mismo para dos poliedros cuando se puede pasar de uno a otro por descomposición.

Spottiswoode

 

El matemático y físico inglés William Spottiswoode fue presidente de la Royal Society. En 1847 publicó cinco artículos titulados Meditationes Analyticae 

Como matemático se ocupó de muchas ramas de su ciencia favorita, más especialmente el álgebra superior, incluyendo la teoría de determinantes , con el cálculo general de los símbolos, y con la aplicación del análisis a la geometría y la mecánica.

Compartir este post
Repost0

Artículos Recientes

  • Matemáticos del Día
    El ojo del matemático es un espejo místico, que no sólo refleja sino que también la absorbe . F.Googol Matemáticos que han nacido o fallecido el día 30 de Enero Matemáticos nacidos este día: 1619 : Ricci 1755 : Fuss 1805 : Sang 1865 : Landsberg 1870:...
  • Matemáticos del Día
    Pensar es moverse en el infinito. H.D.Lacordaire Matemáticos que han nacido o fallecido el día 29 de Enero Matemáticos nacidos este día: 1688 : Swedenborg 1761 : Mendoza y Ríos 1774: Olinthus Gregory 1810 : Kummer 1817 : Ferrel 1888 : Chapman 1928 : Joseph...
  • Matemáticos del Día
    No hay ciencia que hable de las armonías de la naturaleza con más claridad que las Matemáticas. P.Carus Matemáticos que han nacido o fallecido el día 28 de Enero Matemáticos nacidos este día: 1540 : van Ceulen 1608 : Borelli 1611 : Johannes Hevelius 1622...
  • Matemáticos del Día
    Los descubrimientos matemáticos, como las violetas en primavera en el bosque, tienen su temporada que ningún ser humano puede acelerar o retardar. J.Bolyai Matemáticos que han nacido o fallecido el día 27 de Enero Matemáticos nacidos este día: 1772 :...
  • Matemáticos del Día
    Con las teorías matemáticas ocurre como con el resto de las cosas: la belleza puede ser percibida, pero no explicada. A.Cayley Matemáticos que han nacido o fallecido el día 26 de Enero Matemáticos nacidos este día: 1799 : Clapeyron 1862 : Eliakim Moore...
  • Matemáticos del Día
    General, podríamos esperar cualquier cosa de vos menos lecciones de geometría ( a Napoleón) J.L. Lagrange Matemáticos que han nacido o fallecido el día 25 de Enero Matemáticos nacidos este día: 1627 : Boyle 1736 : Lagrange 1812 : Shanks 1843 : Schwarz...
  • Matemáticos del Día
    La reputación de un matemático reside en el número de pruebas erróneas que ha hecho A.S.Besicovitch Matemáticos que han nacido o fallecido el día 24 de Enero Matemáticos nacidos este día: 1679 : von Wolff 1798 : von Staudt 1814 : Colenso 1863 : Adler...
  • Matemáticos del Día
    ¡El infinito! Ninguna cuestión ha conmovido tan profundamente el espíritu humano D. Hilbert Matemáticos que han nacido o fallecido el día 23 de Enero Matemáticos nacidos este día: 1693 : Bilfinger 1719 : Landen 1806 : Minding 1840 : Abbe 1854 : Klug 1862...