Overblog
Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

13 enero 2016 3 13 /01 /enero /2016 06:13

Nada procede del azar, sino de la razón y la necesidad

Leucipo

 Matemáticos que han nacido o fallecido el día 13 de Enero

 

Matemáticos nacidos este día:

1845 : Tisserand
1864 : Wien
1868 : McIntosh
1876 : Eisenhart
1876 : Schmidt
1900 : Cox
1902 : Menger
1931 : Stein

Matemáticos fallecidos este día:

2005 : Lyapin

  • Hoy es el décimo tercer día del año.
  • 13 es el número de sólidos arquimedianos.
  • El primer dígito que coinciden en e, pi y fi es el nueve de la posición décimo tercera.
  • El primo palindromo décimo tercero es 373 cuyas cifras suman 13.
  • 13 es el menor número primo que puede escribirse como suma de dos primos,11+2, y dos compuestos 4+9.
  • 13 es el menor primo cuya suma de dígitos es un cuadrado.
  • 13 es un número de Fibonacci.
  • 13 es un número deficiente pues es mayor que la suma de sus divisores propios.
  • 13 es un número feliz pues cumple que si sumamos los cuadrados de sus dígitos y seguimos el proceso con los resultados obtenidos el resultado es 1.
  • 13 es un número afortunado,Tomemos la secuencia de todos los naturales a partir del 1: 1, 2, 3, 4, 5,… Tachemos los que aparecen en las posiciones pares. Queda: 1, 3, 5, 7, 9, 11, 13,… Como el segundo número que ha quedado es el 3 tachemos todos los que aparecen en las posiciones múltiplo de 3. Queda: 1, 3, 7, 9, 13,… Como el siguiente número que quedó es el 7 tachamos ahora todos los que aparecen en las posiciones múltiplos de 7. Así sucesivamente. Los números que sobreviven se denominan números afortunados.
  • 13 es primo gemelo de 11.
  • 13 es un número libre de cuadrados pues en su descomposición factorial no se repite ningún factor.
  • 13 es un número de Ulam.
Tisserand

El astrónomo y matemático francés François-Félix Tisserand dirigió el observatorio de Toulouse y el de Paris. Es autor de un gran número de descubrimientos e innovaciones en mecánica celeste.

Reemplazó a  Puiseux en la Academia de Ciencias. Demostró que las coordenadas de los objetos celestes pueden expresarse mediante series de funciones periódicas de varias variables y explica la variación de la órbita de Pallas (asteroide entre Marte y Jupiter) calculada por Gauss, por medio de los trabajos de este sobre series hipergeométricas 

Einsenhart

 El matemático americano Luther Eisenhart obtuvo el doctorado con una tesis titulada Infinitesimal deformations of surfaces (Deformaciones infinitesimales de superficies). Este trabajo estuvo muy influenciado por el clasico tratado de Darboux sobre el tema 

 Los trabajos de Einsenhart pueden agruparse en dos etapas diferenciadas, aunque ambas dedicadas a la geometría diferencial. Durante la primera epoca continuó las investigaciones de su tesis doctoral estudiando deformaciones de superficies. Su primer libro A Treatise in the Differential Geometry of Curves and Surfaces (Tratado de

Geometría Diferencial de Curvas y Superficies), trataba sobre este tema y esta basado en los distintos cursos que Einsenhart impartió en la Universidad de Princeton a lo largo de varios años. 

La segunda epoca comienza cuando Einsehart, animado por la teoría de la relatividad de Einstein y las geometrías relacionadas, estudia diversas generalizaciones de la geometría de Riemann. Fruto de estas investigaciones serían los dos libros Riemannian Geometry  y Non-Riemannian Geometry 

En 1933 Eisenhart publicó Continuous Groups of Transformations, que continuaba sus trabajos anteriores sobre la teoría de Lie usando los metodos del cálculo tensorial y la geometría diferencial

Wien

El físico alemán Wilhelm Carl Werner Otto Fritz Franz Wien recibió el Premio Nobel de Física por su trabajo sobre la radiación térmica.

Sus trabajos de investigación se ocuparon de diversos campos de la física, como la hidrodinámica, las descargas eléctricas a través de gases enrarecidos, el estudio de los rayos catódicos y la acción de campos eléctricos y magnéticos sobre los mismos. En 1893 logró combinar la formulación de Maxwell con las leyes de la termodinámica para tratar de explicar la emisividad del llamado cuerpo negro, investigación que cristalizó en el enunciado de una de las leyes de la radiación y que lleva su nombre en su honor.

Investigó también en el campo de las radiaciones, sentando las bases de la teoría cuántica, así como en campos como la óptica y los rayos X.

Fue galardonado con el Premio Nobel de Física en el año 1911 por su descubrimiento sobre las leyes de la radiación del calor.

En su honor se nombró al cráter Wien de Marte. 

Menger

El matemático austriaco Karl Menger, hijo del famoso economista Carl Menger, conocido por el teorema de Menger. Dentro de las matemáticas trabajó en álgebra, álgebra de la geometría, teoría de la curva y la dimensión, etc. Además, contribuyó a la teoría de juegos y a las ciencias sociales.

Su contribución más popular fue la famosa esponja de Menger (erróneamente conocida como la esponja de Sierpinski), una versión tridimensional de la alfombra de Sierpinski. También está relacionada con el conjunto de Cantor.

Junto a Arthur Cayley, Menger se considera uno de los fundadores de la geometría de la distancia, sobre todo por haber formalizado definiciones de las nociones de ángulo y de la curvatura en términos de cantidades físicas directamente medibles, concretamente proporciones de los valores de distancia.

Las expresiones matemáticas características que aparecen en esas definiciones son los determinantes de Cayley-Menger.

Fue un participante activo del Círculo de Viena, donde hubo grandes discusiones sobre ciencias sociales y filosofía en la década de 1920. Durante ese tiempo, demostró un resultado importante de la paradoja de San Petersburgo con interesantes aplicaciones a la teoría de la utilidad de la economía. Más tarde, contribuyó al desarrollo de la teoría de juegos con Oskar Morgenstern.

Stein

El matemático belga Elias Menachem Stein es el Albert Baldwin Dod Profesor de Matemáticas en la Universidad de Princeton. Sus honores incluyen el Premio Steele (1984 y 2002), el Premio Schock en Matemáticas (1993), el premio Wolf en Matemáticas (1999), y la Medalla Nacional de Ciencia (2002). Además, la becas para la National Science Foundation, Fundación Sloan, Guggenheim, y la Academia Nacional de Ciencias. En 2005, Stein fue galardonado con el premio Stefan Bergman en reconocimiento de sus contribuciones en análisis real, complejo y armónico.

 En 1955, Stein obtuvo un Ph.D. de la Universidad de Chicago bajo la dirección de Antoni Zygmund

Stein ha trabajado principalmente en el ámbito de análisis armónico, y ha hecho contribuciones importantes a ambos y aclarar la ampliación de la Teoría Calderón-Zygmund.

Ha escrito numerosos libros sobre análisis armónico, que han sido tan influyentes en dicho campo que a menudo son citados como el estándar de referencias sobre el tema. .

Stein también se destaca por haber formado un inusualmente alto número de estudiantes de posgrado (que ha tenido al menos 45 estudiantes, de acuerdo con el Proyecto Genealogía Matemática), que han sido muy influyentes en la configuración moderna análisis de Fourier. Esto incluye dos medallistas Fields, Charles Fefferman y Terence Tao.

Lyapin 

El matemático ruso (ahora ucraniano) Evgeny Sergeevich Lyapin es especialista enálgebra, y tiene fama de haber escrito la primera monografía sobre semigrupos en 1960.

Fue expertode la UNESCO para elaborar recomendaciones para mejorar la enseñanza

Liapine comenzó a publicar artículos sobre semigrupos a partir de 1947 siendo uno de los pioneros en este campo, con AK Suschkewitsch , Alfred H. Clifford , AI Malcev  , D. Rees , P. Dubreil , M.-L. Dubreil-Jacotin, FW Levi y otros. En 1960 publicó su monografía sobre los semi-grupos, en ruso, traducido en 1963 y reimpresa dos veces. También trabajó activamente en operaciones parciales y escribió una monografía sobre el tema con AE Evseïev, publicado en ruso en 1991 y traducido en 1997  

Tuvo más de cincuenta estudiantes de doctorado muchos de los cuales han tenido una descendencia académica. Fue autor de  un libro de ejercicios de la teoría de grupos, el único que ha sido traducido al Inglés.

Compartir este post
Repost0

Artículos Recientes

  • Matemáticos del Día
    El ojo del matemático es un espejo místico, que no sólo refleja sino que también la absorbe . F.Googol Matemáticos que han nacido o fallecido el día 30 de Enero Matemáticos nacidos este día: 1619 : Ricci 1755 : Fuss 1805 : Sang 1865 : Landsberg 1870:...
  • Matemáticos del Día
    Pensar es moverse en el infinito. H.D.Lacordaire Matemáticos que han nacido o fallecido el día 29 de Enero Matemáticos nacidos este día: 1688 : Swedenborg 1761 : Mendoza y Ríos 1774: Olinthus Gregory 1810 : Kummer 1817 : Ferrel 1888 : Chapman 1928 : Joseph...
  • Matemáticos del Día
    No hay ciencia que hable de las armonías de la naturaleza con más claridad que las Matemáticas. P.Carus Matemáticos que han nacido o fallecido el día 28 de Enero Matemáticos nacidos este día: 1540 : van Ceulen 1608 : Borelli 1611 : Johannes Hevelius 1622...
  • Matemáticos del Día
    Los descubrimientos matemáticos, como las violetas en primavera en el bosque, tienen su temporada que ningún ser humano puede acelerar o retardar. J.Bolyai Matemáticos que han nacido o fallecido el día 27 de Enero Matemáticos nacidos este día: 1772 :...
  • Matemáticos del Día
    Con las teorías matemáticas ocurre como con el resto de las cosas: la belleza puede ser percibida, pero no explicada. A.Cayley Matemáticos que han nacido o fallecido el día 26 de Enero Matemáticos nacidos este día: 1799 : Clapeyron 1862 : Eliakim Moore...
  • Matemáticos del Día
    General, podríamos esperar cualquier cosa de vos menos lecciones de geometría ( a Napoleón) J.L. Lagrange Matemáticos que han nacido o fallecido el día 25 de Enero Matemáticos nacidos este día: 1627 : Boyle 1736 : Lagrange 1812 : Shanks 1843 : Schwarz...
  • Matemáticos del Día
    La reputación de un matemático reside en el número de pruebas erróneas que ha hecho A.S.Besicovitch Matemáticos que han nacido o fallecido el día 24 de Enero Matemáticos nacidos este día: 1679 : von Wolff 1798 : von Staudt 1814 : Colenso 1863 : Adler...
  • Matemáticos del Día
    ¡El infinito! Ninguna cuestión ha conmovido tan profundamente el espíritu humano D. Hilbert Matemáticos que han nacido o fallecido el día 23 de Enero Matemáticos nacidos este día: 1693 : Bilfinger 1719 : Landen 1806 : Minding 1840 : Abbe 1854 : Klug 1862...