Overblog
Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

5 mayo 2021 3 05 /05 /mayo /2021 05:05

En las matemáticas es donde el espíritu encuentra los elementos que más ansía: la continuidad y la perseverancia.

A. France

 Matemáticos que han nacido o fallecido el día 5 de Mayo

      

 


Matemáticos nacidos este día:

1580 : Faulhaber
1833 : Fuchs
1842 : Heinrich Weber
1860 : Chree
1877 : Alexander Brown
1883 : Wheeler
1889 : Gateaux
1895 : Bergman
1897 : Tricomi
1904 : Householder
1905 : Margaret E Boyle
1923 : Morawetz

Matemáticos fallecidos este día:

1859 : Dirichlet
1901: Georg Zehfuss
1957 : Löwenheim
1972 : William Whyburn
1989 : Warschawski
2002 : Barry Johnson
2020: Sergei Ivanovich Adian

 

 

 

Curiosidades del día

  • Hoy es el centésimo vigésimo quinto día del año.
  • 125 es un cubo y la suma de cuadrados: 125=53=112+22. Es el menor número para el que esto ocurre.
  • 125 es un número deficiente pues la suma de sus divisores, excepto el mismo, es menor que él.
  • 125 es un número poderoso pues si un primo p es divisor suyo, también lo es p2
  • 125 puede ordenarse como una especie de  palíndromo curioso 125=5(2+1)

Tal día como hoy del año:

  • 1642, Théodore Deschamps, un médico de Bergerac, le escribe a Marin Mersenne que recordaba que en 1609, durante su estancia en la Universidad de Leiden, había presenciado una demostración de un telescopio por parte del profesor de matemáticas, Rudolph Snellius
  • 1777, Se usa por primera vez i para la constante imaginaria: Euler presentó a  'Academiae' the paper "De Formulis Differentialibus Angularibus maxime irrationalibus quas tamen per logarithmos et arcus circulares integrare licet" que fue publicado póstumamente
  • 1834, William Whewell escribió una carta a Michael Faraday sobre los nombres para describir el proceso de electrólisis que estaba investigando. Whewell sugiere los nombres Anode y Cathode. Los términos se basan en los prefijos griegos "ana-" que significa "arriba" y "kata-" que significa "abajo".
  • 1883, George Cantor escribe a Mitag-Leffler que Kronecker había llamado a su trabajo sobre teoría de conjuntos transfinitos "Humbug" en una carta a Hermite. Kronecker reservó sus ataques para correspondencia personal y conferencias de estudiantes, pero dijo poco o nada públicamente contra Cantor
  • 1980, Grecia emitió un sello en honor al 2300 aniversario de Aristarco de Samos, descubridor de la teoría heliocéntrica.
  • 1981, La República Democrática Alemana emitió un sello en honor a Richard Dedekind

Faulhaber

El Matemático alemán , Johann Faulhaber publicó una recopilación de cuestiones de aritmética y álgebra, acompañada de numerosos problemas (1604). Expuso el empleo de los logaritmos en trigonometría. Encontró los llamados posteriormente números de Bernoulli, al calcular la suma de las potencias enésimas de la serie de los números naturales (1631).

Tricomi

El matemático italiano, Francesco Giacomo Tricomi descubrió en 1923 la ecuación llamada «de Tricomi», que rige los fenómenos de la aerodinámica transónica, es decir, de los fenómenos que se generan cuando un aeroplano supera la barrera del sonido. Por eso, Tricomi se llamaba también «padre de la barrera del sonido»

 Con veintiocho años era ya catedrático en la Universidad y después de un año de enseñanza en Florencia pasó como catedrático de análisis matemático a la Universidad de Turín, donde enseñó hasta 1967.Fue académico de los Lincei y  miembro de las mayores academias italianas y extranjeras.

Sus investigaciones más importantes se centraron en realizar una teoría completa que diez años después, en 1933, el ruso Chapliagyn observó que explicaba los fenómenos del paso de un avión de la velocidad subsónica a la velocidad supersónica. Fue desde entonces cuando las teorías de Tricomi tuvieron una aplicación fundamental en el campo de la aerodinámica y su nombre saltó las fronteras convirtiéndose en una celebridad mundial en la ciencia matemática. 

Dirichlet

Al matemático alemán Johan Peter Gustav Lejeune Dirichlet se le debe lo esencial de la demostración del último teorema de Fermat con la ayuda de  los enteros de Dirichlet, para el caso en el que el parámetro es 5.

Fue alumno de Georg Ohm en Colonia y de Gauss, al que sucedería, en Göttingen. Miembro  de la  Academia  de  Ciencias  de  Berlín (1831). En su obra Lecturas sobre la teoría de números (póstuma, 1863; Dedekind suplementó extensamente      las   ediciones   segunda,   tercera   y  cuarta   de   1871,   1879   y   1894),   explicó   las   Investigaciones  de  Gauss  y  dio  un importante  impulso  a  la  “teoría  analítica  de  los  números”,  al  establecer una íntima conexión entre la aritmética y la teoría de las funciones analíticas. El  problema  que  llevó  a Dirichlet  a  emplear  el  análisis  fue  demostrar  que  cada  progresión  aritmética  a, a + b, a + 2b,..., donde a y b son primos entre sí, contiene un número infinito de primos. Euler y Legendre  propusieron  esta  conjetura,  y  en  1808  Legendre  proporcionó  una  demostración  que  era errónea. En 1837, Dirichlet dio una demostración correcta, para lo que introdujo las llamadas series de Dirichlet

Se le debe también el principio de las casillas o del palomar: si m palomas ocupan n nidos y m>n entonces al menos un nido tiene dos o más palomas.

Varios teoremas llevan su nombre:

Teorema de la unidades de Dirichlet, describe la estructura del grupo de las unidades de un cuerpo de numeros.

Teorema de la progresión aritmética de Dirichlet: Para todo par de enteros naturales no nulos a y b primos entre si, existe una infinidad de números primos de la forma a+nb con n>0

El teorema de convergencia de Dirichlet para las series de Fourier, da las condiciones suficientes para que una función periódica sea la suma de su serie de Fourier.

En Física Matemática enunció un principio fundamental que lleva su nombre:

La energía potencial de un sistema en equilibrio es mínima 

Fuchs

El matemático alemán Lazarus Fuchs estudió en Berlin donde Weierstrass y Kummer supervisaron su tesis sobre curvatura de superficies.

Fuchs dirigirá el célebre Journal de mathematiques pures et appliquées fundado por Crelle. Pese a que sus primeras investigaciones fueron en geometría diferencial y teoría de números, sus trabajos versan sobre soluciones singulares (funciones fuchsianas) de ecuaciones diferenciales lineales.

En  el  campo  de  las  ecuaciones  diferenciales,  creó  la  teoría  de  las  ecuaciones  lineales  fundada  en  las  funciones  analíticas.  En  un  artículo  de  1866  escribió:  “En  la  situación  actual  de  la  ciencia  el  problema  de  la  teoría  de  las  ecuaciones  diferenciales  no  es  tanto  reducir   una   ecuación   dada   a   cuadraturas,   como   deducir   a   partir   de   la   misma   ecuación   el   comportamiento  de  sus  integrales  en  todos  los  puntos  del  plano,  esto  es,  para  todos  los  valores  de  la  variable  compleja”.  En  1866,  Fuchs  publicó  su  trabajo  principal  sobre  ecuaciones  diferenciales  ordinarias. Sus estudios fueron completados por Poincaré  

Weber

  El matemático alemán Heinrich Weber leyó su tesis en Heidelberg dirigida por Hesse. Como profesor en Göttingen tuvo de alumnos a Hilbert y Minkowski

Sus tranbajos, en física matemática, trantan sobre ecuaciones diferenciales y, en matemáticas puras, sobre teoría de números y teoría de funciones algebraicas, en las que trabajó con su amigo Dedekind

En el estudio de estructuras algebraicas, donde  retoma y completa la teoría de Galois sobre  soluciones de ecuaciones algebraicas, se le debe las definiciones axiomáticas y definitivas de grupos abstractos (finitos o no) y el concepto formal de cuerpo, presentido por Hamilton en el estudio de sus cuaterniones y utilizado implicitamente por Dedekind en el estudio de la estructura de los números racionales.

La teoría algebraica de cuerpos será completada por Steinitz. 

Löwenheim 

El matemático alemán Leopold Löwenheim era hijo del profesor de matemática Detmold Louis Löwenheim y la escritora Elise Röhn . Se interesó por la lógica y los fundamentos de las matemáticas, que  Cantor  había puesto en entredicho con las paradojas que surgen de su teoría de conjuntos.

Sus contribuciones al álgebra de la lógica y a la teoría de modelos han resultado de capital importancia así como los múltiples métodos de encontrar soluciones en las ecuaciones funcionales de Boole partiendo de soluciones particulares.

Su vida profesional transcurrió como profesor de matemáticas y física en diversos colegios de Berlín. Logró llevar a cabo investigaciones en el campo del álgebra de la lógica y publicó sus mayores contribuciones entre 1.908 y 1.919. Fue miembro de la Sociedad Matemática de Berlín. Publicó en revistas de prestigio internacional y mantenía correspondencia con los lógico-matemáticos más destacados de su época: Alwin Korselt,  Hilbert , Gottlob Frege Zermelo Müller, entre otros.

A pesar de que muchos de sus escritos desapareciron destruidos en la II Guerra Mundial, se le debe un importante teorema relativo a la lógica y al cálculo de predicados. Su primera versión, de 1915, tenía  una pequeña laguna solventada por Skolem en 1919, de ahí que se le conozca como teorema de Löwenheim-Skolem que establece que si una teoría de primer orden es consistente, entonces tiene al menos un modelo con dominio finito o numerable. 

Bergman

El matemático polaco - americano Stefan Bergman  trabajó inicialmente en análisis complejo. Fue el creador de la función núcleo, conocido hoy como núcleo de Bergman.

Su tesis, sobre series de Fourier, fue dirigida por Richard von Mises. Expulsado de la Universidad de Berlin, en 1933, por ser judío, emigró a Rusia, París y finalmente Estados Unidos

En 1962 fue orador invitado en el Congreso Internacional de Matemáticos en Estocolmo

Su viuda creó el premio Stefan Bergman para contribuciones en análisis real, complejo y armónico. El Premio está apoyado por  American Mathematical Society, encargada de designar los jueces

Gateaux

El matemático francés René Eugène Gateaux murió en la I guerra mundial en acción de guerra. Es conocido por la derivada de Gateaux, generalización del concepto de derivada direccional y por la teoría de control óptimo 

Paul Levy fue el que conoció una edición póstuma de sus trabajos y le dio una considerable difusión en sus Lecciones de Análisis Funcional (1922)

Wheeler

Wheeler thumbnail

oLa matemática estadounidense Anna Johnson Pell Wheeler recibió la beca Alice Freeman Palmer de Wellesley College para estudiar durante un año en la Universidad de Gottingen.
Aquí asistió a conferencias de Hilbert , Klein, Minkowski, Herglotz y Schwarzschild. Trabajó en su doctorado en Gotinga. Mientras estaba allí, Alexander Pell, su antiguo profesor de matemáticas, llegó a Gotinga para poder casarse con Anna. Después de regresar a los Estados Unidos, donde su esposo ahora era jefe de ingeniería, ella enseñó la teoría de funciones y ecuaciones diferenciales.
En 1908, Anna Pell regresó a Gotinga, donde completó el trabajo para su doctorado, pero, después de un desacuerdo con Hilbert , se mudó a Chicago, .En Chicago se convirtió en estudiante de Eliakin Moore y recibió el doctorado en 1909, siendo su tesis Sistemas de funciones biortogonales con aplicaciones a la teoría de ecuaciones integrales, la primera escrita originalmente en Gotinga.

La dirección del trabajo de Anna Wheeler fue muy influenciada por Hilbert .Bajo su guía, trabajó en ecuaciones integrales estudiando espacios lineales de dimensiones infinitas. Este trabajo se realizó en los días en que el análisis funcional todavía estaba en su infancia y gran parte de su trabajo disminuyó en importancia cuando se convirtió en parte de la teoría más general.

Probablemente el honor más importante que recibió fue convertirse en la primera mujer en celebrar la conferencia "Coloquio de conferencias" en la Sociedad Americana de Matemáticas que se reunió en 1927. 

Brown

El matemático escocés Alexander Brown fue nombrado profesor de Matemática Aplicada en el South African College. Fue miembro de la Edinburgh Mathematical Society y se incorporó a la Sociedad en diciembre de 1898. Contribuyó con artículos a las reuniones de la Sociedad, como Sobre la proporción de inconmensurables en geometría con la reunión del viernes 9 de junio de 1905 y Relación entre las distancias de un punto. de tres vértices de un polígono regular, en la reunión del viernes 11 de junio de 1909, comunicada por DC McIntosh.
Brown fue elegido miembro de la Royal Society of South Africa en 1918, estuvo en su Consejo de 1931 a 1935 y nuevamente en 1941, fue su Tesorero Honorario de 1936 a 1940, y Presidente de 1942 a 1945. Alexander Brown fue elegido miembro de la Royal Society of Edinburgh el 20 de mayo de 1907.

Warschawski

El matemático estadounidense nacido en Bielorrusia Stefan E Warschawski es conocido por su investigación sobre análisis complejos y, en particular, sobre mapas conformes. Con una cuidadosa erudición, hizo contribuciones duraderas a la teoría del análisis complejo, en particular a la teoría de los mapeos conformes . Con agudo juicio, guio a dos departamentos de matemáticas a la eminencia. Con modesta gratitud, cimentó muchas amistades en el camino

Morawetz

Thumbnail of Cathleen Morawetz

La atemática canadiense, nacionalizada estadounidense Catheleen Synge Morawetz, estudió  en  la  Universidad  de  Toronto  y  en  el  Massachusetts  Institute  of  Technology,  doctorándose  en  la  Universidad  de  Nueva  York,  con  una  tesis  sobre  la  estabilidad  de  una  implosión  esférica.  Trabajó  en  el  Instituto  Courant  en  Nueva  York,  siendo  la  primera  mujer  que  alcanzó  la  dirección de un centro matemático, el Instituto Courant (1984). La investigación de Morawetz se centró principalmente en el estudio de las ecuaciones diferenciales parciales que gobiernan el flujo de fluidos, particularmente las de tipo mixto que ocurren en el flujo transónico

En 1981, se convirtió en la primera mujer en pronunciar la Conferencia Gibbs de la American Mathematical Society, y en 1982 presentó un discurso invitado en una reunión de la Society for Industrial and Applied Mathematics. Fue nombrada Mujer Científica Destacada en 1993 por la Asociación de Mujeres en la Ciencia. En 1995, se convirtió en la segunda mujer elegida para el cargo de presidenta de la American Mathematical Society. En 1998 recibió la Medalla Nacional de Ciencias; fue la primera mujer en recibir la medalla por su trabajo en matemáticas. En 2004 recibió el premio Leroy P. Steele a la trayectoria. En 2006 ganó el premio George David Birkhoff de Matemática Aplicada. En 2012 se convirtió en miembro de la American Mathematical Society.

Compartir este post
Repost0

Artículos Recientes

  • Matemáticos del día
    ... excelsas, supremas, excelentísimas, incomprensibles, inestimables, innumerables, admirables, inefables, singulares..., que corresponden por semejanza a Dios mismo L.Pacioli Matemáticos que han nacido o fallecido el día 8 de Mayo Matemáticos nacidos...
  • Matemáticos del día
    Conviene que todos los ciudadanos entren en contacto con la verdadera matemática, que es método, arte y ciencia, muy distinta de la calculatoria, que es técnica y rutina L.A.Santaló Matemáticos que han nacido o fallecido el día 7 de Mayo Matemáticos nacidos...
  • Matemáticos del día
    Caballeros, esto es sin duda cierto, es absolutamente paradójico, no podemos comprenderlo y no sabemos lo que significa, pero lo hemos demostrado y, por lo tanto, sabemos que debe ser verdad. C.S.Peirce Matemáticos que han nacido o fallecido el día 6...
  • Uno de los teoremas más famosos de la historia
    La prueba de la completitud del cálculo de predicados afianzó a los matemáticos que trabajaban en el campo de los fundamentos en idea de que el programa de Hilbert sería viable. Sin embargo, un año después, en 1931, el propio Gödel echó por tierra todas...
  • Matemáticos del día
    En las matemáticas es donde el espíritu encuentra los elementos que más ansía: la continuidad y la perseverancia. A. France Matemáticos que han nacido o fallecido el día 5 de Mayo Matemáticos nacidos este día: 1580 : Faulhaber 1833 : Fuchs 1842 : Heinrich...
  • Matemáticos del día
    Los hechos no hablan. Poincaré Matemáticos que han nacido o fallecido el día 4 de Mayo Matemáticos nacidos este día: 1733 : Borda 1840 : Rebstein 1845 : Clifford 1876 : Jung 1888: Raymond Butchart 1916 : Montroll 1918: George Carrier Matemáticos fallecidos...
  • Matemáticos del día
    Una buena notación tiene tantas sutilezas y sugerencias que, en ocasiones, se asemeja a un maestro viviente. B.Russell Matemáticos que han nacido o fallecido el día 3 de Mayo Matemáticos nacidos este día: 1842 : Stolz 1857 : Fraser 1860 : Volterra 1905...
  • Matemáticos del día
    La mecánica es el paraíso de las ciencias matemáticas, porque con ella se alcanza el fruto matemático. Leonardo Da Vinci Matemáticos que han nacido o fallecido el día 2 de Mayo Matemáticos nacidos este día: 1588 : Étienne Pascal 1860 : D'Arcy Thompson...