Overblog
Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

4 mayo 2021 2 04 /05 /mayo /2021 05:04

Los hechos no hablan.

Poincaré

 Matemáticos que han nacido o fallecido el día 4 de Mayo

 

      


Matemáticos nacidos este día:

1733 : Borda
1840 : Rebstein
1845 : Clifford
1876 : Jung
1888: Raymond Butchart
1916 : Montroll
1918: George Carrier

Matemáticos fallecidos este día:

1615 : Roomen
1677 : Barrow
1768 : Camus
1859 : Gergonne
1936 : Dixon
1961 : Turnbull
1974 : Nikodym
1974 : Stark

Curiosidades del día

  • 124 es un número intocable pues no es suma de divisores propios de ningún otro número
  • Hoy es el centésimo vigésimo cuarto día del año.
  • 124=sigma(1! *2!*4!) ( la función sigma de un natural n da la suma de sus divisores positivos).
  • 124 es un número odioso pues su expresión en binario contiene un número impar de unos:1111100
  • 124 es un número deficiente pues es mayor que la suma de sus divisores propios
Tal día como hoy del año:
  • 1675, Carlos II ordena crear que el Observatorio Royal Greenwich  para resolver el problema de longitud
  • 1694, David Gregory y Newton no están de acuerdo con los "números de besos" durante la visita de Gregory a Newton en Cambridge. Newton afirmó que 12 era el número máximo de esferas que podrían colocarse tocando alrededor de una esfera central. Kepler había mostrado una disposición completamente rígida de 12 esferas alrededor de una en su Snow de seis picos, pero Newton y Gregory sabían que colocando las 12 esferas circundantes en los vértices de un icosaedro alrededor de la esfera central, había suficiente espacio para mover las bolas. El "número de besos" máximo se conoce para las primeras cuatro dimensiones, pero más allá de eso solo se conocen exactamente el octavo (240) y el vigésimo cuarto (196,560).
  • 1697, John Wallis envía una carta a la Royal Society "sobre la cicloeida conocida por el cardenal Cusanus, sobre el año 1450".
  • 1935, Albert Einstein, en una carta al New York Times, escribe: "A juicio de los matemáticos vivos más competentes, Fraulein Noether fue el genio creativo creativo más significativo hasta ahora producido desde que comenzó la educación superior de mujeres"
Gergonne 

El matemático y lógico francés Joseph Diaz Gergonne fue capitán del ejército francés. Participó en la Batalla de Valmy el 20 de septiembre de 1792. Más adelante, se reintegró al ejército para participar en 1794 en la invasión francesa de España. Al pasar a la vida civil fue profesor en la recién creada Ecole Centrale como profesor de "matemáticas trascendentales".

En 1810, Gergonne funda la revista Annales de mathématiques pures et appliquées que en la época fue conocida como los Annales de Gergonne la publicación se mantuvo por 22 años hasta su retiro. Fue también profesor y más tarde rector de la Universidad de Montpellier.

Gergonne introdujo la terminología coordenadas polares. Descubrió el principio de dualidad en Geometría proyectiva, cuando noto que cada teorema en el plano conectando puntos y líneas tenía un correspondiente con puntos y líneas intercambiados, siempre que el teorema no hiciera intervenir nociones métricas. En 1816, encontró una solución elegante al problema de Apolonio: que consiste en encontrar una circunferencia que toque tres otras circunferencias dadas.

EL caballero Jean-Charles de Borda

Borda thumbnail

El matemático, físico, politólogo, marino y caballero francés Jean Charles de Borda es autor de un sistema de voto conocido como método de contar de Borda. Se elige un número n menor o igual que el número de candidatos. Cada elector hace una lista de n candidatos por orden de preferencia. Al primero de la lista se le da n puntos, al segundo n-a, y así sucesivamente hasta el último que tendrá 1 punto. la puntuación de cada candidato es la suma de todos los puntos, el de mayor puntuación total gana las elecciones.

En la marina es conocido por estudiar instrumentos que permiten calcula la longitud y latitud de un punto.

Romeen

El matemático flamenco Adrien Van Romeen, Adrianus Romanus, se interesó en el cálculo de pi y en las tablas trigonométricas.

En su primera obra científica ,Ideae mathematicae primasive methodus polygonorum , es el primero en utilizar notación abreviada como sin(A+B)

En este libro lanza el desafio de resolver la ecuación de grado cuarenta y cinco 45x - 3795x3 + 95634x5 - 1138500x7 + 7811375x9 - 34512075x11 + 105306075x13 - 232676280x15 + 384942375x17 - 488494125x19 + 483841800x21 - 378658800x23 + 236030652x25 - 117679100x27 + 46955700x29 - 14945040x31 + 3764565x33 - 740259x35 + 111150x37 - 12300x39 + 945x41 - 45x43 + x45 = C con formule resuelta por el matemático francés Viete

William Kingdon Clifford  

El matemático inglés William Kingdon Clifford contribuyó al desarrollo y uso  de los productos escalares y vectoriales en matemáticas y física. Estudió en el King’s College de Londres. Graduado como segundo “wrangler” por el Trinity College, siendo  elegido  “fellow”  (1868).  Gimnasta  consumado;  ganó  premios  de  declamación;  escribió una  colección de cuentos para niños (Gente pequeña). Profesor de matemáticas y mecánica del University College de  Londres  (1871).  Publicó  una  cadena  de  teoremas  sobre  circunferencias.  Fue  uno  de  los  iniciadores de la geometría algebraica. Creó las llamadas “álgebras de Clifford”, de las que son casos particulares  las  de  los octonianos  o  de  los  bicuaternios  (éstos  satisfacen  la  ley  del  producto  de  la  multiplicación,  pero  la multiplicación  no  es  asociativa)

Apoyándose en los resultados de Riemann, sus trabajos sobre las geometrías no euclideas, las superficies y la curvatura del espacio serán un precedente de la teoría de la relatividad desarrollada posteriormente por Einstein  

Barrow

El filósofo y teólogo Isaac Barrow fue también un brillante físico y matemático. Profesor de Newton, que le sucederá en su cátedra, adelanta en su obra Lectiones Geometricae el nacimiento del cálculo diferencial e integral  por el estudio geométrico de las tangentes a una curva por medio del llamado triángulo diferencial o característico.

El mismo procedimiento fue usado por Pascal en su Traité des sinus du quart de cercle para calcular el área bajo un arco de cicloide. Fue  un  matemático  conservador  al  que  le desagradaba  el  formalismo del álgebra. Admirador de los geómetras antiguos y muy versado en griego y árabe, pudo traducir  alguno  de  los  trabajos  de  Euclides,  Apolonio, Arquímedes  y  Teodosio,  editando  algunas  de  sus obras. Las frecuentes discusiones entre maestro y discípulo, la mutua colaboración, pues Newton revisó y corrigió una de las ediciones de las obras de Barrow, son hechos que contribuyeron a asignar importancia  a  la  influencia de  Barrow  en  el  futuro  del  cálculo  infinitesimal.  Barrow  prefería  las  concepciones cinemáticas de Torricelli a la aritmética estática de Wallis, y prefería también considerar las magnitudes  geométricas  como  si  estuvieran  engendradas  por  un  flujo  continuo  de puntos.  Decía  que el tiempo tenía muchas semejanzas con una línea, considerando que ambos estaban formados por indivisibles. Barrow no consideraba al álgebra  como parte de la matemática propiamente dicha, sino como  una  formalización  de  la  lógica.  Para  él,  sólo  la geometría  era  matemática,  y  la  aritmética  y  el  álgebra trataban de magnitudes geométricas expresadas en símbolos. 63 Barrow,  Isaac (1630-1677). Matemático y teólogo inglés. Nació en Londres. Fue alumno de Wallis. Recibió las órdenes sagradas (1660). Profesor de griego en la Universidad de Cambridge (1660-1663). Profesor de geometría en el Gresham College de Londres. Fue maestro y amigo de Newton, a quien en 1669  cedió  su  cátedra  de  matemáticas  en  Cambridge  (Barrow  fue  el  primero  en  ocupar  la  cátedra  lucasiana, creada por Henry Lucas en 1664) para dedicarse a la teología. Ocupó en Londres el puesto de capellán del rey Carlos II (1670). En 1673 fue director del Trinity College de Cambridge, y en 1675 fue  elegido  vicecanciller  de  Cambridge.  Fue  un  matemático  conservador  al  que le  desagradaba  el  formalismo del álgebra. Admirador de los geómetras antiguos y muy versado en griego y árabe, pudo traducir  alguno  de  los  trabajos  de  Euclides,  Apolonio, Arquímedes  y  Teodosio,  editando  algunas  de  sus obras. Las frecuentes discusiones entre maestro y discípulo, la mutua colaboración, pues Newton revisó y corrigió una de las ediciones de las obras de Barrow, son hechos que contribuyeron a asignar importancia  a  la  influencia de  Barrow  en  el  futuro  del  cálculo  infinitesimal.  Barrow  prefería  las  concepciones cinemáticas de Torricelli a la aritmética estática de Wallis, y prefería también considerar las magnitudes  geométricas  como  si  estuvieran  engendradas  por  un  flujo  continuo  de puntos.  Decía  que el tiempo tenía muchas semejanzas con una línea, considerando que ambos estaban formados por indivisibles. Barrow no consideraba al álgebra  como parte de la matemática propiamente dicha, sino como  una  formalización  de  la  lógica.  Para  él,  sólo  la geometría  era  matemática,  y  la  aritmética  y  el  álgebra trataban de magnitudes geométricas expresadas en símbolos.  Utilizaba  métodos  geométricos,  “liberados”,  según decía,  “de  las  abominables  cargas  del  cálculo”.    Sus razones sobre la certeza de la geometría son las siguientes: claridad de sus conceptos, definiciones no  ambiguas,  seguridad intuitiva  y  verdad  universal  de  sus  axiomas,  posibilidad  clara  y  fácil  de  imaginar  sus postulados,  pequeño  número  de  sus  axiomas,  visión  clara  del  modo  en  que  las magnitudes  se  generan,  fácil  orden  de  sus  demostraciones  y  elusión  de  cosas  no conocidas.  Los  principios de la geometría han sido confirmados mediante la experiencia constante y continuará siendo así  porque  el  mundo  diseñado  por  Dios  es  inmutable.  La geometría  es  por  ello  la  ciencia  perfecta  y  segura

Nikodym

Otton Marcin Nikodym  fue un matemático polaco. Se formó en las universidades de Leópolis, Varsovia y la Sorbona. Enseñó en las universidades de Cracovia y Varsovia, así como en la Escuela Politécnica de Cracovia. Emigró a los Estados Unidos en 1948 y enseñó en Kenyon College. 

Trabajó en diferentes áreas, aunque es fundamentalmente conocido por su contribución al desarrollo de la integral de Lebesgue. Su trabajo en teoría de la medida le llevó a interesarse en las álgebras booleanas. Su trabajo en los EE.UU. se centró en la teoría de operadores en el espacio de Hilbert, basado en álgebras booleanas, que culminó en su obra The Mathematical Apparatus for Quantum-Theories. También prestó atención al área de la educación matemática. 

Dixon

El matemático inglés Alfred Cardew Dixon es conocido por su trabajo en ecuaciones diferenciales.Trabajó en las integrales de Fredholm independientemente de Fredholm . Trabajó tanto en ecuaciones diferenciales ordinarias como en  ecuaciones diferenciales parciales estudiando las  integrales abelianas, funciones automorfas y ecuaciones funcionales.

 Fue Presidente de London Mathematical Society 

Rebstein

Johann Jakob Rebstein  fue un matemático suizo , especializado en geodesia y agrimensura.  En 1857 se matriculó en el Politécnico de Zúrich , en el que se graduó tres años después.  En el año siguiente completó estudios en París, en el Collège de France y los años siguientes fue profesor de física y matemáticas en Frauenfeld hasta el 1877. 

En 1877, al volver a Zúrich, fue profesor en la escuela cantonal, hasta 1889 en que fue nombrado profesor adjunto del Politécnico de Zúrich. En 1898 pasó a ser profesor titular hasta poco tiempo antes de su muerte en 1907. 

Rebstein es recordado por sus trabajos en geometría y agrimensura . Fue técnico en jefe del catastro del Cantón de Turgovia y del de las ciudades de Zúrich , Sankt Gallen y Lucerna . A parte de un libro de texto de geometría y uso del teodolito , la mayoría de sus trabajos son informes cartográficos y / o catastrales, como su Die Kartographie der Schweiz in ihrer Historisches Entwicklung dargestellt (La cartografía de Suiza y su desarrollo histórico) (1883). 

Montroll

El científico y matemático estadounidense Elliott Waters Montroll tuvo una carrera excepcionalmente variada: fue becario de investigación Sterling en la Universidad de Yale donde su trabajo en el modelo Ising de un ferromagnético lo llevó a resolver ciertos problemas de la cadena de Markov. Después de esto, fue investigador asociado en la Universidad de Cornell en 1941-42, donde comenzó sus estudios sobre el problema de encontrar el espectro de frecuencia de las vibraciones elásticas en las redes cristalinas. Fue elegido miembro de la Academia Nacional de Ciencias (Estados Unidos) en 1969 y de la Academia Estadounidense de Artes y Ciencias en 1973. Su trabajo sobre el flujo de tráfico lo llevó a ganar (conjuntamente) el Premio Lanchester de la Sociedad de Investigación de Operaciones de América. en 1959.

Compartir este post
Repost0

Artículos Recientes

  • Matemáticos del día
    ... excelsas, supremas, excelentísimas, incomprensibles, inestimables, innumerables, admirables, inefables, singulares..., que corresponden por semejanza a Dios mismo L.Pacioli Matemáticos que han nacido o fallecido el día 8 de Mayo Matemáticos nacidos...
  • Matemáticos del día
    Conviene que todos los ciudadanos entren en contacto con la verdadera matemática, que es método, arte y ciencia, muy distinta de la calculatoria, que es técnica y rutina L.A.Santaló Matemáticos que han nacido o fallecido el día 7 de Mayo Matemáticos nacidos...
  • Matemáticos del día
    Caballeros, esto es sin duda cierto, es absolutamente paradójico, no podemos comprenderlo y no sabemos lo que significa, pero lo hemos demostrado y, por lo tanto, sabemos que debe ser verdad. C.S.Peirce Matemáticos que han nacido o fallecido el día 6...
  • Uno de los teoremas más famosos de la historia
    La prueba de la completitud del cálculo de predicados afianzó a los matemáticos que trabajaban en el campo de los fundamentos en idea de que el programa de Hilbert sería viable. Sin embargo, un año después, en 1931, el propio Gödel echó por tierra todas...
  • Matemáticos del día
    En las matemáticas es donde el espíritu encuentra los elementos que más ansía: la continuidad y la perseverancia. A. France Matemáticos que han nacido o fallecido el día 5 de Mayo Matemáticos nacidos este día: 1580 : Faulhaber 1833 : Fuchs 1842 : Heinrich...
  • Matemáticos del día
    Los hechos no hablan. Poincaré Matemáticos que han nacido o fallecido el día 4 de Mayo Matemáticos nacidos este día: 1733 : Borda 1840 : Rebstein 1845 : Clifford 1876 : Jung 1888: Raymond Butchart 1916 : Montroll 1918: George Carrier Matemáticos fallecidos...
  • Matemáticos del día
    Una buena notación tiene tantas sutilezas y sugerencias que, en ocasiones, se asemeja a un maestro viviente. B.Russell Matemáticos que han nacido o fallecido el día 3 de Mayo Matemáticos nacidos este día: 1842 : Stolz 1857 : Fraser 1860 : Volterra 1905...
  • Matemáticos del día
    La mecánica es el paraíso de las ciencias matemáticas, porque con ella se alcanza el fruto matemático. Leonardo Da Vinci Matemáticos que han nacido o fallecido el día 2 de Mayo Matemáticos nacidos este día: 1588 : Étienne Pascal 1860 : D'Arcy Thompson...