Overblog
Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

29 noviembre 2022 2 29 /11 /noviembre /2022 06:14

 

 

333 es un número cortés pues Abajo Euclides!

J.Dieudonné

 Matemáticos que han nacido o fallecido el día 29 de Noviembre

Matemáticos nacidos este día:

1803 : Doppler
1847 : Greenhill
1849 : Lamb
1854 : Beyel
1859 : Franel
1866 : Brown
1879 : Nikolai Krylov
1892 : Doetsch
1959 : Borcherds

Matemáticos fallecidos este día:

1759 : Nicolaus(I) Bernoulli
1872 : Somerville
1920 : Sprague
1935: Ivar Bendixson
1953 : Barnes
1991 : Estermann
1992 : Dieudonné
2004 : Boersma
2010 : Schelp
2020: Iossif Vladimirovich Ostrovskii

Curiosidades del día

  • Hoy es el tricentésimo trigésimo tercer día del año.
  • 333 tiene 4 divisores cuya suma es 494
  • 333 es capicúa en base 1o y en base 8:515.
  • 333=32x37, es un número de Joy-Giver (nº de alegría) , divisible por la suma de sus dígitos
  • Si sumamos los menores números primos que contengan las cifras del 0 al 9 obtenemos 333: 101+11+2+3+41+5+61+7+83+19=333.
  • 333 es un número de  Harshad pues es múltiplo de la suma de sus dígitos (9)
  • 333 es un número desnudo pues es divisible por cada uno de sus dígitos
  • 333 es un número digitalmente poderoso (d-powerful) pues puede escribirse como suma de potencias positivas de sus dígitos  333=32+34+35
  • 333 es un número modesto pues al dividirlo por 33 da de resto 3
  • 333 es un número pernicioso pues u expresión binaria, 101001101, contiene un número primo de unos (1)
  • 333 es un número de Moran pues su radio 333/(3+3+3) = 37 es primo
  • 333 es un número cortés pues puede expresarse como suma de naturales consecutivos  10 + ... + 27. 
  • 333 es un número deficiente pues es mayor que la suma de sus divisores propios.
  • 333 es un número odioso pues su expresión binaria contiene un número impar de unos.
  • 333 es un número ondulado

Tal día como hoy del año:

  • 1114, Un terremoto devastó la ciudad de Antioquía en Turquía. En el suburbio de Mamistra, el joven matemático Adelard de Bath, recién llegado a Oriente Medio para estudiar la sabiduría de los árabes, se aferró a un puente de piedra temiendo por su vida.
  • 1907, Florence Nightingale recibe la Orden del Mérito
  • 1960, Digital Equipment Company (DEC) anuncia el PDP-1, la primera computadora con un terminal de visualización de video.

El físico y matemático austriaco Christian Andreas Doppler  se hizo famoso por estudiar el cambio de las propiedades del sonido cuando el objeto que lo emite está en movimiento. Doppler estudió inicialmente el cambio de color de la luz de las estrellas, refiriéndose a la distancia como la principal causa de este fenómeno. Debido a que no contaba con instrumentos para medir la velocidad de la luz, diseñó un experimento en el cual aplicó su teoría a las ondas sonoras, lo cual le permitió encontrar las expresiones matemáticas que describen cómo, cuando un objeto se acerca hacia nosotros, el sonido que emite se vuelve más agudo, mientras que al alejarse, el sonido se torna más grave. 

Realizó los estudios primarios en Salzburgo y los secundarios en Linz. Pronto llegó a manifestar un especial talento para las matemáticas y, por consejo de uno de sus profesores del liceo, ingresó en el Instituto Politécnico de Viena, que se había fundado en 1815. Allí permaneció entre 1822 y 1825, año en el que se graduó. Regresó a Salzburgo y, poco después, continuó sus estudios en la Universidad de Viena, mostrando especial interés en materias como la astronomía, mecánica y matemáticas avanzadas. Cuando terminó sus estudios, en 1929, fue contratado como asistente del profesor Burg, cuya especialidad era la mecánica y las matemáticas. Durante los cuatro años que estuvo ocupando este puesto publicó cuatro artículos de tema matemático.

A la edad de 30 años comenzó a buscar un puesto más estable. Probó en las escuelas de Linz, Salzburgo, Gorizia, Viena, Zurich, y Praga, entre otras. Recibió respuestas negativas de muchas de ellas y de otras no le contestaron. Tuvo que pasar 18 meses trabajando de contable en una fábrica de hilaturas de algodón. Cansado de su situación puso su mirada en América. No obstante, recibió ofertas para enseñar en Suiza o Praga, que entonces formaban parte ambas del Imperio Austrohúngaro. Eligió Praga, pero no llegó a enseñar por problemas burocráticos. Se preparó para opositar para profesor de matemáticas avanzadas en el Instituto Politécnico de Viena y en el de Praga. No tuvo éxito, pero impartió clases cuatro horas a la semana entre 1836 y 1838. 

En 1836 contrajo matrimonio con Mathild Sturm, de Estrasburgo. A finales de 1837 quedó vacante el puesto de matemáticas y geometría práctica en Praga. Lo ocupó y en 1839 se convocó la oposición. No tomó parte, pero fue contratado como profesor a tiempo completo en 1841 

El matemático y astrónomo británico Ernest Willians Brown se dedicó principalmente al estudio del movimiento lunar. Confeccionó unas tablas sobre el movimiento de la Luna, que aún en la actualidad están consideradas como una obra de referencia. Sin embargo la Luna se negó a seguir el camino planeado por los cálculos matemáticos. Esas fluctuaciones no predichas por la teoría, fueron explicadas por un artículo suyo publicado en 1926 

El matemático ruso Nikolai Mitrofanovich Krylov es conocido por sus aportes obras en interpolación, mecánica no lineal, y métodos numéricos  para resolver ecuaciones de la física matemática.

Nikolai Krylov ha desarrollado nuevos métodos para el análisis de las ecuaciones de la física matemática, que se pueden utilizar no sólo para demostrar la existencia de soluciones, sino también para su construcción. Desde 1932, trabajó junto con su alumno Nikolay Bogoliubov en los problemas matemáticos de la mecánica no lineal. En este período, inventaron ciertos métodos asintóticos para la integración de las ecuaciones diferenciales no lineales, estudiaron los sistemas dinámicos, e hizo importantes contribuciones a los fundamentos de la mecánica no lineal. Ellos demostraron los primeros teoremas sobre la existencia de medidas invariantes conocidos como teoremas Krylov-Bogolyubov, introdujeron el método de promedio Krylov-Bogoliubov y, junto con Yurii Mitropolskiy , desarrollaron el método asintótico Krylov-Bogoliubov-Mitropolskiy para la resolución de ecuaciones aproximadas de la mecánica no lineales.

Nikolai Krylov fue miembro de la Société Mathématique de France y de la Sociedad Americana de Matemáticas .

El matemático sudafricano Richard E. Borcherds En 1977 obtuvo medalla de plata en la olimpiada internacional de matemáticas, y al año siguiente obtuvo la medalla de oro. El 28 de agosto de 1998 recibió la Medalla Fields por demostrar la conjetura moonshine, que es el centro del campo de investigación llamado monstrous moonshine.

Richard asistió a las clases en el King Edward’s School de Birmingham. Era un muy buen jugador de ajedrez, proclamándose campeón en un torneo para menores de 21 años. Siendo niño estuvo en contacto, pues, con diversos aspectos de la matemática, estando en particular inmerso en la lectura de textos como Los poliedros de Coxeter, o Los Modelos Matemáticos de Cundy y Rollet.

Fue estudiante del Trinity Collage de Cambridge, donde obtuvo la licenciatura, pasando como estudiante de postgrado a trabajar en la investigación bajo la supervisión de John Conway. En principio Richard pensaba que no estaba dotado de las cualidades necesarias para ser un matemático de investigación:

“Me sentía desplazado. La mayoría del tiempo lo pasaba luchando por conservar mi trabajo. Veía a la gente de mi generación, como Simon Donalson (Medalla Fields 1986) trabajando con mucho éxito y pensaba que era evidente que yo no podria compararme con ellos. Hubo momentos en los que pensé en abandonar…”

Sin embargo, Richard Borcherds obtuvo un enorme éxito, consiguiendo el doctorado en 1985 con su tesis The Leech lattice and other lattices. La red Leech, que había sido descubierta por John Leech en 1965, mostraba una alta densidad de esferas de 24 dimensiones. Desde el grupo de los automorfismos de esta red, Conway había descubierto tres desconocidos grupos simples finitos, en 1968.

Borcherds escribió en el prefacio de su tesis:

“Doy las gracias a mi supervisor de investigación, el profesor J.H.Conway por su ayuda y aliento. Doy también las gracias a los S.E.R.C. por su apoyo financiero y al Trinity Collage por la beca de investigación y su mantenimiento.”

Publicó el artículo The Leech lattice en 1985, y en el año siguiente, Vertex álgebras, Las álgebras de Kac-Mody y el grupo monstruo. Richard Borcherds había inventado la idea de un álgebra de vértices, que se mostraría en los años siguientes como de gran importancia, pero que en los primeros momentos no sería tomada en cuenta por sus colegas Su más famoso resultado fue lograr la prueba de la llamada “Conjetura Luz de Luna” ("Moonshine Conjecture"), en la primavera de 1989. En realidad llevaba ya unos ocho años dándole vueltas a esta conjetura, mientras escribía artículos de gran significación. La inspiración que le permitió obtener dicha prueba le vino en un viaje a la India, que él mismo cuenta:

“Me encontraba en Cachemira, después de haber estado viajando por el norte de la India, en un largísimo y aburrido viaje en autobús que duraba ya 24 horas. En un determinado momento el autobús hubo de detenerse porque le impedía el paso un corrimiento de tierras y no podíamos avanzar.

Aquello resultó terriblemente desagradable. Yo había estado pensando en algunos cálculos durante el viaje en el autobús, y de improviso, encontré la idea que hacía que todo funcionara…”

En 1992 le fue concedido por la Sociedad Matemática de Londres el Premio Junior Whitehead

También en este año de 1992 le fue concedido por la Sociedad Matemática Europea un premio en el Congreso Europeo de Matemáticas, que se celebró en París. Más tarde, el 10 de marzo de 1994 fue elegido para una beca de la Real Sociedad. Su mayor honor, sin embargo, fue el que le fuera concedida la Medalla Fields el 18 de agosto de 1998 en la ceremonia de apertura del Congreso Internacional de Matemáticos de Berlín. El premio se hizo, según se declara en el congreso:

“... por sus contribuciones al álgebra, a la teoría de las formas automorfas y a la física matemática, incluyendo la introducción de las álgebras de vértices y Álgebras de Lie de Borcherds, la prueba de la Conjetura de Conway-Norton y el descubrimiento de una nueva clase de productos automorfos infinitos. “ 

Nicolaus (I) Bernouilli

El matemático suizo Nicolaus Bernoulli fue uno de los muchos matemáticos prominentes de la familia Bernoulli .

Él era el hijo de Nicolaus Bernoulli, pintor y concejal de Basilea. En 1704 se graduó en la Universidad de Basilea con Jakob Bernoulli y se doctoró cinco años después con un trabajo sobre teoría de la probabilidad en la ley. En 1716 obtuvo la cátedra en la Universidad de Padua , donde trabajó en ecuaciones diferenciales y la geometría . En 1722 regresó a Suiza y obtuvo una cátedra en  Lógica en la Universidad de Basilea .

Fue elegido Fellow de la Royal Society de Londres en marzo de 1714.

Sus contribuciones más importantes se pueden encontrar en sus cartas, en particular a Pierre Rémond de Montmort . En estas cartas, introdujo, en particular, la  San Paradoja de San Petersburgo . También se comunicó con Gottfried Wilhelm Leibniz y Leonhard Euler 

La matemática y astrónoma escocesa Mary Fairfax Greig Somerville fue una mujer que con pasión se dedicó al estudio de las matemáticas y al conocimiento de los avances científicos. Popularizó la astronomía y escribió multitud de ensayos. La Academia  Inglesa la premió concediéndole ser socia de honor, ya que las mujeres no podían ser socias oficiales

“Tengo 92 años…, mi memoria para los acontecimientos ordinarios es débil, pero no para las matemáticas o las experiencias científicas. Todavía soy capaz de leer libros de algebra. superior durante cuatro o cinco horas por la mañana, e incluso de resolver problemas”.

Su primer éxito fue ganar una medalla de plata por la solución de un problema sobre las ecuaciones diofánticas en el Mathematical Repository de W. Wallace.

Su segundo matrimonio fue con su primo William Somerville un médico con interés por todo lo científico, por lo que llega a Mary la felicidad a su vida. En Londres, Mary encuentra un interesante ambiente científico. Sus compañeros científicos  le envían libros y trabajos científicos, la invitan a conferencias y acuden a la casa de los Somerville para compartir sus experimentos.

Mary comienza a desarrollar sus ensayos sobre la Refracción de los rayos solares, Acción de los rayos solares sobre jugos vegetales, Transmisión de los rayos solares en diferentes medios. Trabaja en lo que podría considerarse un antecedente de la fotografía, observando los efectos de decoloración que se producen sobre papel bañado en cloruro de plata expuesto al sol.

Demostró interés y dedicación a la astronomía, y fue nombrada miembro honorario de la Real Sociedad de Astronomía siendo las primeras mujeres que obtuvieron tal honor.

Era una persona de alto prestigio en la comunidad científica, totalmente reconocida en diferentes países y se sentía feliz por poder  seguir estudiando.

Tras una etapa en Italia, publica Physical Geography, un manuscrito que estuvo a punto de guardar sin editar, más su marido le insistió  para que no lo hiciera. Se hicieron de él siete ediciones. Entre sus logros destacan la versión traducida de la obra de Laplace Mecánica de los Cielos que se convirtió en un texto estándar en los cursos de matemáticas superiores. En este trabajo Somerville, que fue conocida más tarde por su predicción de que se descubrirían los planetas Neptuno y Plutón, trabajó de forma incansable hasta su muerte.

Somerville, que fue completamente autodidacta, fue considerado como uno de los pocos de habla Inglés matemáticos capaces de llevar a cabo este trabajo y fue profusamente elogiada por muchos de los principales científicos, matemáticos y otros intelectuales de su época.

A los 85 años comienza a escribir su cuarto libro On Molecular and Mycroscopic Science y revisa su libro On the theory of differences. A los 89 años escribe su autobiografía y sigue estudiando matemáticas aun con 92 años. Cuando le sorprende la muerte estaba investigando sobre cuaterniones.

Quienes tuvieron la suerte de conocerla no dudaron en llamarla “la reina de las ciencias del siglo XIX”. 

Thumbnail of Jean Dieudonné

El matemático francés Jean Alexandre Dieudonné relizó su tesis de doctorado bajo la dirección de Montel Picard. Es uno de los fundadores del grupo Bourbaki

Fue, junto a Grothendieck, de los primeros profesores del celebérrimo Instituto de Altos Estudios Científicos.

Además de la puesta en marcha de Los Elementos de Matemáticas de Bourbaki, es autor de numerosas publicaciones en teoría de espacios vectoriales topológicos,grupos de Lie, geometría algebraica, álgebra homológica en colaboración de Grothendieck

Es también autor del célebre slogan " abajo Euclides" no para denigrar al genio griego sino para fustigar el exceso de  enseñanza de geometría del triángulo en las escuelas.

El matemático holandés Johannes Boersma se especializó en análisis matemático. Su tesis fue dirigida por Adriaan Isak van de Vooren, experto en mecánica de fluidos aunque estuvo muy influenciado por  Christoffel J Bouwkamp un experto en la teoría de la difracción de los laboratoris Philips

Uno de los intereses Boersma fue la función G de Cornelis Simon Meijer . En 1956 Boersma escribió un ensayo de una función, que es un caso especial de la función G de Meijer , que ganó un premio de la Universidad de Groningen y comenzó su interés por la función G que duraría toda su vida.Su promera publicación fue Cálculo de integrales de Fresnel (1960) donde daba una tabla de coeficientes de aproximación de las integrales de Fresnel por series de potencias finitas. En 1960  publicó Mathematical theory of the two-body problem with one of the masses decreasing with time. 

Boersma fue un gran matemático aplicado que resolvía problemas difíciles con gran habilidad e ingenio. Su capacidad analítica era magnífica y profunda por lo que pocos de su generación podría igualar sus logros.

Lamb

El matemático inglés Horace Lamb, nacido en Stockport, junto a Manchester. Fue profesor en Cambridge  (1872-1874),  de  matemáticas  en  la  Universidad  de  Adelaida  (Australia)  y,  vuelto  a  Inglaterra, en la Universidad Victoria en Lancashire. Su libro Tratado sobre la teoría matemática del movimiento  de  fluidos  (1879),  hoy  conocido  como  Hidrodinámica (1895),  fue  el  primer  texto  en  reconocer la aceptación de la teoría de funciones en Cambridge, pues en esta Universidad se utilizaban artificios engorrosos a fin de evitar el uso de las funciones de variable compleja. Lamb escribió: “Un viajero que rehúse pasar por un puente hasta haber comprobado personalmente la solidez de cada una 
de  sus  partes  no  irá  muy  lejos;  es  necesario  arriesgar  algo,  incluso  en  matemáticas”.  Publicó  Matemáticas  superiores, Cálculo  infinitesimal  (1897), Teoría  dinámica  del  sonido  (1910)  y  Alta mecánica (1920). 

Greenhill

Thumbnail of George Greenhill

El matemáticos inglés George Greenhill fue nombrado profesor de matemáticas en la Real Academia Militar de Woolwich. El trabajo de Greenhill se centró principalmente en funciones elípticas . Estaba interesado en sus aplicaciones a la dinámica, la hidrodinámica, la elasticidad y la electrostática. Como podría imaginarse dado que Greenhill pasó la mayor parte de su vida trabajando en un establecimiento militar, su trabajo a menudo estaba dirigido a aplicaciones de balística y otras aplicaciones militares.
Greenhill aplicó esta teoría para dar cuenta de la estabilidad del vuelo conferido a un proyectil alargado mediante rifling. Determinó la velocidad angular menor alrededor de su eje para la cual el movimiento constante de un sólido de revolución puede ser estable. ... Esta aplicación práctica de lo que se consideraba una teoría matemática recóndita le valió mucho reconocimiento en Woolwich.
Una contribución importante que Greenhill hizo a la teoría de la elasticidad fue su estudio de la mayor longitud que puede tener un cilindro antes de que se doble bajo su propio peso. Sus aplicaciones incluyeron calcular la altura máxima que un árbol puede crecer.
Además de su investigación original, Greenhill escribió varios textos excelentes y artículos de enciclopedia. Entre estos libros se encuentran Diferencial en cálculo integral (1886), Las aplicaciones de las funciones elípticas (1892), Tratado sobre hidrostática (1894), Notas sobre dinámica (1908), Teoría de líneas de corriente con aplicaciones a un avión (1910), Dinámica de vuelo mecánico (1912) y teoría giroscópica (1914). En 1922 dirigió un equipo que preparaba una tabla de funciones elípticas.

Doetsch

El matemático alemán Gustav Doetsch fue un investigador de aviación, veterano de guerra condecorado y un entusiasta partidario de los nazis. La formación moderna y la estructura permanente de la transformada de Laplace se encuentran en la obra de Doetsch de 1937 Theorie und Anwendung der Laplace-Transformation, que fue bien recibida internacionalmente. Dedicó la mayor parte de su investigación y actividad científica a la transformación de Laplace, y sus libros sobre el tema se convirtieron en textos estándar en todo el mundo, traducidos a varios idiomas. Sus textos fueron los primeros en aplicar la transformada de Laplace a la ingeniería

Barnes

El matemático inglés Ernest Barnes escribió 29 artículos matemáticos durante los años 1897-1910. Su trabajo inicial se ocupó de varios aspectos de la función gamma, incluidas las generalizaciones de esta función dadas por la llamada función G de Barnes, que satisface la ecuación G (z + 1) = G (z) Γ (z) y la función de doble gamma. A continuación, Barnes centró su atención en la teoría de las funciones integrales, donde, en una serie de artículos, investigó su estructura asintótica. También consideró las ecuaciones en diferencias lineales de segundo orden conectadas con las funciones hipergeométricas. En los últimos cinco de sus artículos que tratan de las funciones hipergeométricas, Barnes hizo un uso extensivo de las integrales estudiadas por Mellin en las cuales la integral.

Ostrovskii

Ostrovskii thumbnail

El matemático soviético y ucraniano Iossif Vladimirovich Ostrovskii realizó importantes contribuciones a la teoría de la función y la teoría de la probabilidad , miembro correspondiente de la Academia Nacional de Ciencias de Ucrania (1978).

Obtuvo un título en la Universidad Nacional de Járkov en 1956, y entró en estudios de postgrado, donde su supervisor era Boris Yakovlevich Levin . En 1959 defendió su tesis doctoral La conexión entre el crecimiento de una función meromórfica y la distribución de sus valores por argumentos . En 1965 defendió su tesis doctoral Propiedades asintóticas de funciones enteras y meromórficas y algunas de sus aplicaciones . De 1958 a 1985 trabajó en la Universidad Nacional de Járkov, desde 1969 como jefe del Departamento de Teoría de la Función. De 1986 a 2001 dirigió el Departamento de Teoría de la Función en el Instituto Verkin de Física e Ingeniería de Baja Temperatura

 

El matemático sueco Ivar Otto Bendixson demostró su excepcional talento para las matemáticas desde el principio de sus días de estudiante y, a medida que progresaba, estos talentos se hizo más y más evidente. También comenzó en gran medida como un matemático puro, pero más adelante en su carrera se volvió a considerar también los problemas de las matemáticas aplicadas. Su primer trabajo de investigación fue sobre la teoría de conjuntos y los fundamentos de las matemáticas, siguiendo las ideas que Cantor había introducido. Él contribuyó con resultados importantes en la topología de punto de ajuste

Bendixson siendo aún un joven estudiante se hizo un nombre por demostrar un teorema que incluyó en una carta que le escribió a Cantor , la carta  se publicó en el Volumen 2 del Acta Mathematica. Este teorema afirma

... cada conjunto no numerable cerrado se puede dividir en un conjunto perfecto y un conjunto numerable.

Bendixson también hizo interesantes aportaciones al álgebra cuando investigó el problema clásico de la solución algebraica de ecuaciones. Abel había demostrado que la ecuación general de quinto grado no podía ser resuelta por los radicales, mientras que Galois había desarrollado la teoría de Galois que determina que las ecuaciones pueden resolverse por  radicales. Bendixson volvió a la contribución original de Abel y demostró que el método de Abel podría extenderse a describir con precisión  que  ecuaciones pueden resolverse por radicales. Abel había escrito poco antes de su muerte que esperaba ser capaz de lograr este objetivo, y es interesante que Bendixson fue capaz de hacerlo.

Bendixson es recordado por el teorema de Poincaré – Bendixson que dice que una curva integral que no termina en un punto singular tiene un ciclo límite. Lo demostró por primera vez por Poincaré , pero una prueba más rigurosa de las hipótesis más débil fue dada por Bendixson en 1901

Compartir este post
Repost0

Artículos Recientes

  • Matemáticos del Día
    La geometría es la única ciencia que Dios se ha complacido en donar a la humanidad. T.Hobbes Matemáticos que han nacido o fallecido el día 4 de Diciembre Matemáticos nacidos este día: 1795 : Carlyle 1806 : John T Graves 1870: Ion Ionescu 1886 : Bieberbach...
  • Matemáticos del Día
    Todo en la vida está sujeto a cálculo. Napoleón Bonaparte Matemáticos que han nacido o fallecido el día 3 de Diciembre Matemáticos nacidos este día: 1901: Levan Gokieli 1903 : Goldstein 1924 : Backus 1933: Dorothy Foster 1936: Jerome Keisler 1967: Marie...
  • Matemáticos del Día
    1010100009 336 es un número pernicioso pues su expresión binaria (Una verdad científica no es más que una cierta infatución del deseo, que vive exclusivamente en la mente. J.Brouwer Matemáticos que han nacido o fallecido el día 2 de Diciembre Matemáticos...
  • Matemáticos del Día
    Las ideas de los matemáticos, como las de los pintores o los poetas, deben ser bellas. La belleza es el primer requisito, no hay lugar permanente en el mundo para unas matemáticas feas. G.H.Hardy Matemáticos que han nacido o fallecido el día 1 de Diciembre...
  • Matemáticos del Día
    La Matemática es la única buena metafísica Lord Kelvin; Matemáticos que han nacido o fallecido el día 30 de Noviembre Matemáticos nacidos este día: 1549 : Savile 1720: María Andresa Casamayor 1852 : Kiselev 1891 : Ince 1904: František Wolf 1923 : Kadets...
  • Matemáticos del Día
    333 es un número cortés pues Abajo Euclides! J.Dieudonné Matemáticos que han nacido o fallecido el día 29 de Noviembre Matemáticos nacidos este día: 1803 : Doppler 1847 : Greenhill 1849 : Lamb 1854 : Beyel 1859 : Franel 1866 : Brown 1879 : Nikolai Krylov...
  • Matemáticos del Día
    Simplificar generalizando A. Grothendieck Matemáticos que han nacido o fallecido el día 28 de Noviembre Matemáticos nacidos este día: 1700 : Nathaniel Bliss 1898: Zyoiti Suetuna 1898 : Wishart 1905 : Albert Tucker Matemáticos fallecidos este día: 1821:...
  • Matemáticos del Día
    La máquina analítica teje patrones algebraicos, así como el telar de Jacquard teje flores y hoja A.Lovelace Matemáticos que han nacido o fallecido el día 27 de Noviembre Matemáticos nacidos este día: 1867 : Arthur Dixon 1909 : Malcev 1914 : Begle 1923...