Overblog
Seguir este blog Administration + Create my blog

Presentación

  • : Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

28 octubre 2022 5 28 /10 /octubre /2022 05:13

Puesto que la naturaleza no admite más de tres dimensiones, parecería muy impropio hablar de sólidos de cuatro, cinco, seis o más dimensiones

J.Wallis

 Matemáticos que han nacido o fallecido el día 28 de Octubre

Matemáticos nacidos este día:

1703 : Deparcieux
1804 : Verhulst
1873 : Sundman
1880 : Cipolla
1892:  Dijksterhuis
1936:  Lindenstrauss

Matemáticos fallecidos este día:

1703 : Wallis
1917 : Levi
1918 : Dini
1918:  Bouchet
1965 : Eisenhart
1965:  Amoroso
1986 : Reiner
1989 : Hay
  • Hoy es el tricentésimo primer día del año.
  • 301 es la suma de tres números primos consecutivos empezando en 97.
  • 301 es congruente con 1 mod b para cualquier base b desde 2 hasta 6.
  • 301  es producto de dos números primos 301=7x43, con 7=4+3
  • 301 es un número semiprimo pues puede expresarse como producto de dos primos 301 = 7 ⋅ 43, y es un entero de Blum pues los dos primos son iguales a 3 mod 4  
  • 301 es un número pernicioso pues su expresión binaria, 100101101, tiene un número primo de unos, 5
  • 301 es un número cortés pues  puede expresarse como suma de naturales consecutivos 15 + ... + 28. 
  • 301 es un número aritmético pues la media de sus divisores es un número entero, 88
  • 301 es un número deficiente pues es mayor que la suma de sus divisores propios.
  • 301 es un número feliz pues cumple que si sumamos los cuadrados de sus dígitos y seguimos el proceso con los resultados obtenidos el resultado es 1.
  • 301 es un número odioso pues en su expresión binaria hay un número impar de unos.
  • 301 es un número libre de cuadrados pues en su descomposición factorial no se repite ningún factor

Tal día como hoy del año:

  • 1386, Apertura de la Universidad de Heidelberg. Es la universidad más antigua de Alemania y fue la tercera universidad establecida en el Sacro Imperio Romano
  • 1462, El arzobispo Adolph de Nassau capturó la ciudad de Maintz y permitió que sus soldados saquearan la ciudad. Esto obligó a Gutenberg y sus impresores a huir, pero en lugar de cortar la impresión de raíz, forzó su expansión a Estrasburgo, Colonia, Basilea, Augsburgo, Ulm, Nuremberg, Subiaco y, en 1470, París.
  • 1636, Se funda el Harvard College. La única tesis de maestría en matemáticas en los Estados Unidos antes de 1700 fue en Harvard. Esto fue en 1693 cuando el candidato tomó la posición afirmativa sobre “¿Es posible la cuadratura de un círculo?
  • 1751, Euler escribe a Mersenne para decirle que solo conoce siete números perfectos, los de la forma(2p- 1 ) (2p - 1) con p = 2, 3, 5, 7, 13, 17 y 19. También dice que no está seguro de si 231- 1 es primo, y agrega que si tiene un factor, será de la forma 64n + 1. 
  • 1752, Euler publica un artículo que enumera los 161 números menos de 15.000 para los cuales n2+ 1  es un primo. Le había descrito a Goldbach ya el 9 de julio de 1743 una carta por la cual los números de esta forma podrían ser divisibles
  • 1965, se completó el Gateway Arch (630 '(190 m) de altura) en St. Louis, Missouri. Esta elegante y amplia curva cónica de acero inoxidable es el monumento más alto de los EE. UU. El arquitecto del arco de la curva catenaria ( NO es una parábola) fue Eero Saarinen, quien ganó el concurso de diseño en 1947
Deparcieux

El matemático francés Antoine Deparcieux es el autor del Essai sur les probabilités de la durée de la vie humaine (1746) que sirvió de base para los cálculos de las primas de seguros de vida en Gran Bretaña y Francia

Deparcieux analiza en detalle las observaciones empíricas. Como matemático y físico , se le puede considerar, después de Halley y Struyck, uno de los fundadores de la estimación de la longevidad y todos los temas relacionados con ese concepto.

En 1741 publicó Nouveaux Traités de Trigonometrie Rectiligne et sphérique que consistía en tablas de senos, tangentes y secantes  (calculados con siete decimales), y los logaritmos  de senos  y tengentes (calculado a ocho decimales). Este trabajo también contiene interesantes fórmulas trigonométricas para la tangente del ángulo mitad 

Pierre-François Verhulst y la ley logística de las poblaciones

Al matemático belga Pierre FranÇois Verhulst se le debe el modelo Verhulst para le estudio de la evolución de las poblaciones animales. Este modelo da lugar a una ecuación diferencial del tipo y'=ay(1-y) donde y es el tamaño de la población y a es un parámetro dependiente del medio. Esta ecuación tiene como solución la función logística de Verhulst.

Estudio en el Ateneo de Bruselas. El joven Verhulst destacó en todos los campos, especialmente en matemáticas, compartiendo honores con Joseph Plateau y Guillaume-Adolphe Nerenburger al graduarse en 1822. Tuvieron un excelente profesor de matemáticas,  Adolphe Quetelet, con el que le unió después una gran amistad. En ese año, Verhulst inicia sus estudios de matemáticas en la Universidad de Gante, en la que se reencuentra con Quetelet como profesor de álgebra. Tras unos inicios con algunas dificultades, comienza a destacarse por su capacidad matemática.

Se doctora en 1825 con una tesis sobre las ecuaciones bibnomiales, y es contratado como profesor de análisis matemático en el Museo de Ciencias y Letras de Bruselas en 1827. Pero su mala salud (quizás por la tuberculosis, no se sabe a ciencia cierta) hace que abandone las clases, aunque seguirá estudiando e investigando.Aunque Verhulst hizo importantes contribuciones a las matemáticas, especialmente en el estudio de las funciones elípticas, su gran obra es Notice sur la loi que la population suit dans son accroissement, publicada en 1838. Quetelet había propuesto que el crecimiento exponencial que dictaba la ley de Malthus debería estar corregida con fuerzas que evitaban ese crecimiento, dependiendo del cuadrado de la tasa de crecimiento, pero Verhulst tenía una visión mucho más clara, y decía que “sabemos que el famoso Malthus demostró el principio por el que la población humana crece en progresión geométrica de manera que se dobla cada veinticinco años. El incremento virtual de la población debe estar limitado por el tamaño y la fertilidad del país. De manera que la población se irá acercando cada vez más a una situación estacionaria”

Sundman

 El matemático y astrónomo finlandés Karl Frithiof Sundman realizó su tesis en astronomía sobre las perturbaciones de Jupiter sobre las órbitas de los asteroides del sistema solar (1901)

Completó los trabajos de Laplace relativos a las perturbaciones seculares de las órbitas planetarias elípticas e hizo progresar de manera casi definitiva el celebre problema de los tres cuerpos, un muy dificil problema de mecánica celeste.

En este tipo de problemas las funciones suelen expresarse por medio de series de Fourier, una dificultad es la presencia de varias variables.

En 1909 Sundman presenta un conjunto de soluciones por medio de tales series, sistema de nueve ecuaciones diferenciales de segundo orden.Diez años después, el francés Chazy da una solución definitiva

Cipolla

El matemático italiano Michele Cipolla fue profesor de análisis matemático en las universidades de Catania y Palermo, fue miembro de diversas sociedades astronómicas y matemáticas. Desarrolló una teoría de las sucesiones de conjuntos y resolvió el problema de las congruencias binómicas. Destaca su obra Análisis algebraico e introducción al cálculo infinitesimal.

Fue especialista en teoría de números, desarrolló el algoritmo de Cipolla para encontrar raíces cuadradas módulo un primo.

Wallis

Al matemático inglés John Wallis se le atribuye en parte el desarrollo del cálculo moderno. Fue un precursor del cálculo infinitesimal (introdujo la utilización del símbolo ∞ para representar la noción de infinito). Entre 1643 y 1689 fue criptógrafo del Parlamento y posteriormente de la Corte real. Fue también uno de los fundadores de la Royal Society y profesor en la Universidad de Oxford.

Wallis se unió al grupo de científicos que posteriormente formarían la Royal Society. Al fin podía satisfacer sus intereses matemáticos, llegando a dominar en unas pocas semanas de 1647 el libro Clavis Mathematicae de William Oughtred. En poco tiempo, empezó a escribir sus propios tratados sobre un amplio número de materias: a lo largo de su vida, Wallis realizó contribuciones significativas a la trigonometría, el cálculo, la geometría y el análisis de las series infinitas.En 1655, Wallis publicó un tratado sobre secciones cónicas en el que las define analíticamente. Este fue el primer libro en el que estas curvas fueron consideradas y definidas como curvas de segundo grado. Contribuyó a eliminar algunas de las dificultades y oscuridades presentes en los trabajos de René Descartes sobre geometría analítica.

En 1656 se publicó Arithmetica Infinitorum, el trabajo más importante de Wallis. En este tratado, los métodos de análisis de Descartes y Cavalieri fueron ampliados y sistematizados, aunque algunas ideas recibieron críticas. Tras un corto periodo centrado en las secciones cónicas, comenzó desarrollando una notación estándar para las potencias, ampliándola desde los números enteros positivos hasta los números racionales

Dejando al margen las múltiples aplicaciones algebraicas de este descubrimiento, se dedicó a calcular, mediante integración, el área encerrada entre la curva y = xm , el eje x y cualquier ordenada x = h. Demostró que la relación entre esta área y el paralelogramo de la misma base y la misma altura era 1 / (m + 1). Aparentemente, él asumió que el mismo resultado sería cierto para la curva y = axm, donde a es cualquier constante y m cualquier número positivo o negativo; sin embargo, únicamente desarrolló el caso de la parábola, donde m = 2, y el de la hipérbola, donde m = − 1. En este último caso, su interpretación del resultado fue errónea.

en 1659, Wallis publica un tratado con la solución a los problemas de las cicloides propuestos por Blaise Pascal. En él, explica cómo los principios aportados en su Arithmetica Infinitorum pueden utilizarse para la rectificación de curvas algebraicas; y da una solución al problema de rectificar (es decir, calcular la longitud de) la parábola semicúbica x³ = ay², descubierta en 1657 por su pupilo William Neil. Puesto que todos los intentos para rectificar la elipse y la hipérbola habían sido (necesariamente) ineficaces, se había supuesto que ninguna curva podría ser rectificada, como de hecho Descartes había afirmado que era el caso. La espiral logarítmica había sido rectificada por Evangelista Torricelli, siendo la primera línea curva (con excepción del círculo) cuya longitud fue calculada, pero la ampliación de Neil y Wallis a cualquier curva algebraica fue una novedad. La cicloide fue la siguiente curva en ser rectificada, en 1658 por Wren.

Antes, en 1658, un descubrimiento similar, pero independiente del de Neil, fue realizado por van Heuraët, y publicado en 1659 por van Schooten en su edición de la Descartes's Geometría. La solución aportada por Neil y Wallis era muy similiar aunque no enunciaba ninguna regla general y el razonamiento era algo torpe. Un tercer método fue sugerido por Fermat en 1660, pero era laborioso y poco elegante.

En 1668, la Royal Society propuso a la consideración de los matemáticos la teoría de la colisión de los cuerpos. Wallis, Wren y Huygens ofrecieron soluciones similares y correctas, todas basadas en lo que hoy se conoce como conservación del momento lineal, pero, mientras que Wren y Huygens reducían su teoría a las colisiones elásticas, Wallis tuvo en cuenta también las colisiones inelásticas. Como continuación, en 1669 presentó un trabajo sobre los centros de gravedad estáticos y en 1670 otro sobre los dinámicos. En conjunto, todo ello constituye un buen resumen de lo que en la época se sabía sobre este tema.

En 1685, Wallis publicó Algebra, con un prólogo con el desarrollo histórico de la materia, que contenía una gran cantidad de valiosa información. La segunda edición, lanzada en 1693 formando el segundo volumen de su obra Opera, fue considerablemente ampliada. Este álgebra es significativa por contener el primer uso sistemático de fórmulas.

Resulta curioso observar que Wallis rechazaba como absurda la idea actual de considerar un número negativo como menos que nada, pero aceptaba verlo como algo mayor que infinito. A pesar de esto, generalmente se le considera el autor de la idea de la recta de números enteros, en la cual los números se representan geométricamente en una línea con los positivos aumentando hacia la derecha y los negativos hacia la izquierda.

En su Opera Mathematica I (1695) Wallis introdujo el término fracción continua. 

Obtuvo el premio Lavagna  y Golden medal of the Accademia Nazionale delle Scienze detta dei XL (1911)

Dini

El matemático italiano Ulisse Dini fue alumno de Betti en Pisa. Estudió con Hermite y Bertrand

Tras sus trabajos en geometría diferencial, sus investigaciones se orientaron hacia el cálculo diferencial y el análisis funcional: límites de sucesiones y series de funciones continuas, convergencia uniforme.

En particular es autor del importante tratado Théorie des fonctions d'une variable réelle

Fue también diputado y senador italiano

Levi

El matemático italiano Eugenio Elia Levi, muerto en la I guerra mundial, es conocido por sus contribuciones fundamentales en la teoría de grupos , en la teoría de operadores diferenciales parciales y en la teoría de funciones de varias variables complejas; era el hermano menor de Beppo Levi.

Escribió sólo tres artículos en teoría de grupos : en el primero, Levi (1905 ) descubrió lo que hoy se llama descomposición de Levi, que fue conjeturada por Wilhelm Killing y probado por Élie Cartan en un caso especial.

En la teoría de funciones de varias variables complejas que introdujo el concepto de pseudoconvexidad durante sus investigaciones en el dominio de la existencia de tales funciones: resultó ser uno de los conceptos clave de la teoría.

 Sus investigaciones en  teoría de operadores diferenciales parciales conducen al método de la paramétrica, que es básicamente una forma de construir soluciones fundamentales para elípticas operadores diferenciales parciales con coeficientes variables: la paramétrica es ampliamente utilizado en la teoría de los operadores seudodiferenciales . 

Einsenhart

 El matemático americano Luther Eisenhart obtuvo el doctorado con una tesis titulada Infinitesimal deformations of surfaces (Deformaciones infinitesimales de superficies). Este trabajo estuvo muy influenciado por el clasico tratado de Darboux sobre el tema  

Los trabajos de Einsenhart pueden agruparse en dos etapas diferenciadas, aunque ambas dedicadas a la geometría diferencial. Durante la primera epoca continuó las investigaciones de su tesis doctoral estudiando deformaciones de superficies. Su primer libro A Treatise in the Differential Geometry of Curves and Surfaces (Tratado de  Geometría Diferencial de Curvas y Superficies), trataba sobre este tema y esta basado en los distintos cursos que Einsenhart impartió en la Universidad de Princeton a lo largo de varios años. 

La segunda epoca comienza cuando Einsehart, animado por la teoría de la relatividad de Einstein y las geometrías relacionadas, estudia diversas generalizaciones de la geometría de Riemann. Fruto de estas investigaciones serían los dos libros Riemannian Geometry  y Non-Riemannian Geometry 

En 1933 Eisenhart publicó Continuous Groups of Transformations, que continuaba sus trabajos anteriores sobre la teoría de Lie usando los metodos del cálculo tensorial y la geometría diferencial

Louise Schmir Hay

La matemática, nacida en Francia, Louise Schmir Hay fue especialista en lógica matemática, teoría de funciones recursivas, y ciencia de la computación teórica.

En 1980 fue nombrada directora del Departamento de Matemáticas de la Universidad de Illinois en Chicago, convirtiéndose en ese momento en la única mujer dirigiendo un departamento de matemáticas de una universidad importante en EE.UU.

Louise Hay fue un miembro fundador de la Asociación de Mujeres en Matemáticas 

En 1990, la AWM estableció el Premio Louise Hay por Contribuciones a la Educación Matemática

Dijksterhuis

Miniatura de Eduard Jan Dijksterhuis

Eduard Jan Dijksterhuis fue un matemático holandés mejor conocido por su trabajo en la historia y filosofía de las matemáticas.

Su primera biografía fue sobre la vida y obra de Arquímedes , publicada en holandés en 1938. En 1943 escribió sobre la vida y la época de Simon Stevin , nuevamente primero en holandés, que Dikshoorn tradujo para su publicación en inglés en 1970. Tras la finalización de Huygens Collected Works en 1950, en la reunión anual de la Sociedad Holandesa de Ciencias en Haarlem, Dijksterhuis habló sobre el proyecto de 60 años. El texto de su discurso fue publicado en Centaurusen marzo de 1953, cuando dio un "esbozo de la posición que ocupaba Huygens en la vida científica del siglo XVII". Para ello explicó “la naturaleza dual de la ciencia, que es a la vez acumulativa y colectiva. La primera característica implica que las alturas intelectuales antes reservadas a unos pocos privilegiados se vuelven a su debido tiempo accesibles a los principiantes; la segunda, que en el sentido estricto de la palabra, ningún científico trabaja solo". Señaló que Huygens "a menudo prefería dejar sus hallazgos sin publicar y se limitaba a comunicar los resultados en sus cartas o en un trabajo de fecha muy posterior". Sobre la contribución de Huygens al cronometraje, escribió Dijksterhuis, "se las arregló para hacer que la rueda del reloj mantuviera el movimiento del péndulo, que por otro lado le comunica su propia periodicidad, que no cambia materialmente por la conexión". Nombró a los editores de Omnia Opera: Bierens de Haan , Johannes Bosscha , Diederik Korteweg , Vollgraff y AA Nijland . 

Compartir este post
Repost0

Artículos Recientes

  • Matemáticos del Día
    El mejor instrumento de que se dispone para el tratamiento de los cuaterniones son los cuaterniones O.Heaviside Matemáticos que han nacido o fallecido el día 3 de Febrero Matemáticos nacidos este día: 1774 : Mollweide 1893 : Julia 1898 : Urysohn 1905...
  • Matemáticos del Día
    La historia del mundo es la suma de aquello que hubiera sido evitable B.Russell Matemáticos que han nacido o fallecido el día 2 de Febrero Matemáticos nacidos este día: 1522 : Ferrari 1765 : Osipovsky 1786 : Binet 1793 : Hopkins 1842 : Sokhotsky 1849...
  • Matemáticos del Día
    Si me siento infeliz, hago matemáticas para ser feliz. Si me siento feliz, hago matemáticas para seguir siendo feliz A.Renyi Matemáticos que han nacido o fallecido el día 1 de Febrero Matemáticos nacidos este día: 1840 : Whitworth 1888 : Hermann Kober...
  • Matemáticos del Día
    Ningún tema pierde tanto cuando se le divorcia de su historia como las matemáticas E.T.Bell Matemáticos que han nacido o fallecido el día 31 de Enero Matemáticos nacidos este día: 1715 : Giovanni Fagnano 1841 : Loyd 1886 : Watson 1896 : Janovskaja 1914...
  • Matemáticos del Día
    El ojo del matemático es un espejo místico, que no sólo refleja sino que también la absorbe . F.Googol Matemáticos que han nacido o fallecido el día 30 de Enero Matemáticos nacidos este día: 1619 : Ricci 1755 : Fuss 1805 : Sang 1865 : Landsberg 1870:...
  • Matemáticos del Día
    Pensar es moverse en el infinito. H.D.Lacordaire Matemáticos que han nacido o fallecido el día 29 de Enero Matemáticos nacidos este día: 1688 : Swedenborg 1761 : Mendoza y Ríos 1774: Olinthus Gregory 1810 : Kummer 1817 : Ferrel 1888 : Chapman 1928 : Joseph...
  • Matemáticos del Día
    No hay ciencia que hable de las armonías de la naturaleza con más claridad que las Matemáticas. P.Carus Matemáticos que han nacido o fallecido el día 28 de Enero Matemáticos nacidos este día: 1540 : van Ceulen 1608 : Borelli 1611 : Johannes Hevelius 1622...
  • Matemáticos del Día
    Los descubrimientos matemáticos, como las violetas en primavera en el bosque, tienen su temporada que ningún ser humano puede acelerar o retardar. J.Bolyai Matemáticos que han nacido o fallecido el día 27 de Enero Matemáticos nacidos este día: 1772 :...