Overblog Seguir este blog
Edit post Administration Create my blog

Presentación

  • : Matemalescopio
  • Matemalescopio
  • : Divulgación matemática, obsevatorio matemático, actualidad matemática, historia de las matemáticas. Las matemáticas son una ciencia en movimiento, queremos ayudar a seguirlas
  • Contacto

Perfil

  • Antonio Rosales Góngora.
  • Matemáticas,Bahía de Almería
  • Matemáticas,Bahía de Almería

Proyecto EULER

Pi Day Countdown

Al que le gustan las matemáticas las estudia

El que las comprende las aplica

El que las sabe las enseña

Y... ese

al que ni le gustan, ni las comprende, ni las sabe...

Ese dice como hay que aprenderlas,

como hay que aplicarlas

y como hay que enseñarlas. 

Traductor

 

Ideario

Así es, pues, la matemática; te recuerda la forma invisible del alma; da vida a sus propios descubrimientos; despierta la mente y purifica el intelecto; arroja luz sobre nuestras ideas intrínsecas y anula el olvido y la ignorancia que nos corresponde por el nacimiento (Proclo).”

 

Juro por Apolo délico y por Apolo pitio

Por Urania y todas las musas,

por Zeus, la Tierra y el Sol, por Afrodita, Hefesto y Dionisos,

y por todos los dioses y las diosas,

que nunca abandonaré las matemáticas

ni permitiré que la chispa que los dioses han prendido en mí se apague. 

Si no mantengo mi compromiso, que todos los dioses y diosas por los que he jurado se enfurezcan conmigo y muera de una muerte miserable;

y que si lo cumplo, me sean favorables.

15 noviembre 2013 5 15 /11 /noviembre /2013 06:00

Donde haya materia existe geometría.

J.Kepler

 Matemáticos que han nacido o fallecido el día 15 de Noviembre

      

Matemáticos nacidos este día:

1688 : Castel
1793 : Chasles
1794 : Taurinus
1894 : Suslin
1900 : Redei
1907 : Marczewski
1942 : Crighton

Matemáticos fallecidos este día:

1280 : Albertus
1630 : Kepler
1761 : Poleni
1976 : Calugareanu
1996 : Rennie

      Castel

El matemático jesuita francés Louis Bertrand Castel después de haber estudiado  literatura,  se dedicó por completo a las matemáticas y a la  filosofía .

Defendía firmemente que existe una relación directa entre los siete colores del arco iris y las siete notas de la escala.

Castel pensaba que las vibraciones producen color, igual que sonido, así que llegó a la conclusión que el color y el sonido son análogos, lo que lo llevó a teorizar sobre el ‘clavecín ocular’, que mostraba colores en relación con las notas. Originalmente era sólo una teoría, pero el escepticismo de la crítica lo empujó a pasarse 30 años intentando construir su invento.

 Escribió varias obras científicas, lo que más llamó la atención en fue su Optique des couleurs (1740). También escribió Traité de physique sur la pesanteur universelle des corps (1724), Matemática universelle (1728), y un análisis crítico del sistema de Sir Isaac Newton en 1743. 

Chasles

El matemático francés Michel Floréal Chasles estudió en la École Polytechnique de París con Siméon Denis Poisson. En la Guerra de la Sexta Coalición, Chasles luchó en la defensa de París en 1814. Tras la guerra, Chasles inició su carrera como ingeniero para terminar sus estudios de matemáticas.

Publicó Aperçu historique sur l'origine et le développement des méthodes en géometrie (1837), un estudio del método de polares recíprocos en geometría proyectiva. El trabajo obtuvo notoriedad, respeto y fue nombrado profesor en la École Polytechnique en 1841. Una segunda edición de su libro se publicó en 1875, y Leonhard Sohncke tradujo su estudio al alemán. Posteriormente, Chasles fue nombrado profesor de geometria superior en la Sorbona. Está considerado uno de los mayores geómetras de todos los tiempos, con contribuciones fundamentales a la ciencia.

Chasles y Jakob Steiner elaboraron independientemente la moderna geometría proyectiva. Chasles usó su 'método de características' y su 'principio de correspondencia' para resolver inúmeros problemas y las soluciones fueron publicadas en Comptes Rendus. El problema de la atracción de un elipsoide en un punto externo fue revisado por él en 1846.

Fue galardonado con la Medalla Copley en 1865.

En 1867, el insigne matemático José de Echegaray expuso en España la geometría de Michel Chasles con la obra Introducción a la geometría superior.

El nombre de Chasles es uno de los 72 que aparecen sobre la Torre Eiffel.

Este insigne matemático cayo en manos de un fenomenal estafador. Un tal Denis Vrain-Lucas, con antecedentes de fabricante de falsos árboles genealógicos, ratón de biblioteca y embaucador de poca monta armó una trama combinando la falsificación con el patriotismo: “demostró” que Newton no era el autor de la ley de gravitación universal, sino que la idea se la había sugerido Pascal, lo que Galileo corroboraba.

Pese al pedido de secreto, Chasles hirvió de heroico fervor galo y no pudo más: comunicó el descubrimiento a la Academia de Ciencias. Enorme escándalo a nivel mundial: ¡un pérfido inglés había arrebatado a Francia la gloria del mayor descubrimiento de la física! El mundo científico parecía un hormiguero dado vuelta. Obviamente, Chasles mostró las cartas pertinentes, pero los escépticos encontraron varios anacronismos y clamaron falsedad. Impertérrito, Chasles alumbraba nuevas cartas (oportunamente suministradas por Vrain-Lucas) que “explicaban” las contradicciones.

      Taurinus      

      

carta de Gauss a Taurinus

Frank AdolphTaurinus nació en 1794 en Konig im Odenwalde (Alemania), después de estudiar Derecho vivió desde 1822 en Colonia. Al estudio de la geometría le estimuló su tío Ferdinand Karl Schweikart. Fue también influido por Gauss, quien, en contestación a una suya, le escribió una célebre carta privada (1824), de la que, sin embargo, no llegó a comprender su profundidad. Schweikart había llegado al convencimiento de la validez lógica de la "Astralgeometría", en la que la suma de los ángulos de un triángulo era menor que dos rectos, y tanto menor cuanto mayor era el triángulo.

Hacia 1821 Schweikart escribió una carta a su sobrino Taurinus, y este debió de dedicarse intensamente al estudio de la geometría. En 1825 publicó la Théorie der Parallellinien. En el mismo año 1825 encontró que este libro contenía muchas cosas que ya no le agradaban y decidió complementarlo con un nuevo libro en latín: Geometriae prima elementa (1826). El mismo Taurinus costeó la publicación del libro y envió algunos ejemplares a amigos y autoridades matemáticas. Más tarde, al no encontrar ningún reconocimiento a sus esfuerzos, despechado quemó el resto de la edición.

Taurinus rechaza la geometría del ángulo obtuso, porque en ella, dada una recta cualquiera, se sigue que todas las rectas que le son perpendiculares se cortan en dos puntos, simétricos el uno del otro respecto de la recta dada; lo cual es contrario al axioma (así en singular) de la línea recta, a saber que dos puntos determinan una única recta

La Théorie tiene una larga Postdata (Nachscrift) a la que sigue todavía un largo Suplemento (Nachtrag). En este último afirma explícita y rotundamente que la geometría del ángulo agudo no contiene en sí misma ninguna contradicción.

He aquí este notabilísimo texto:

"Toda geometría, en la que se supone que la suma de los ángulos de un triángulo es menor que dos rectos, no contiene en sí misma -por razón del concepto- ninguna contradicción con el axioma de la línea recta y yo retiro completamente mi conjetura de que puediera encontrar una.^ Lo que es una necesaria consecuencia del axioma, que entre dos puntos sólo una línea recta es posible, es lo que en cierto modo no excluye. La contradicción hay que buscarla en que no hay uno, sino infinitos sistemas de esta clase, cada uno de los cuales podría tener la misma pretensión de validez; y en que, por tanto, habría infinitas rectas entre dospuntos del espacio ..." 

Marczewski

El matemático polaco Edward Marczewski, su apellido fue hasta 1940 Szpilrajn, fue miembro de la Escuela Superior de Matemáticas. Su vida y su obra después de la Segunda Guerra Mundial, estaban relacionados con Wroclaw , donde fue uno de los creadores del centro científico polaco.

Sus principales campos de interés fueron la teoría de la medida, la teoría de conjuntos descriptiva, topología general, la teoría de probabilidades y álgebra universal . También ha publicado trabajos sobre análisis real y complejo, las matemáticas aplicadas y la lógica matemática.

Marczewski demostró que la dimensión topológica , para un espacio métrico separable arbitrario X , coincide con la dimensión de Hausdorff bajo una de las métricas en X que inducen a la topología dada de X (mientras que lo contrario, la dimensión de Hausdorff es siempre mayor o igual a la dimensión topológica). Este es un teorema fundamental de la teoría de fractales . 

Albertus

El filósofo y teólogo alemán San Alberto Magno, quizás descendiente de los condes de Bollstädt, estudió filosofía, matemáticas y medicina en París y en Padua y cursó teología en Bolonia. Fue profesor en Colonia (donde Aquinate fue discípulo suyo) y otros lugares. Rector de la Universidad de Colonia (1249), provincial de los dominicos alemanes (1254) y obispo de Ratisbona (1260), renunció al episcopado a los dos años; en 1274 predicó en Alemania y en Bohemia la cruzada de Gregorio X y asistió al Concilio de Lyon. Sin su aportación enciclopédica (sirviéndose de los filósofos, teólogos, matemáticos y médicos musulmanes y judíos), la síntesis de su discípulo Tomás de Aquino hubiera sido imposible. 

Pensaba que el objetivo de la ciencia natural no es simplemente aceptar las declaraciones de los demás, sino investigar las causas que están en en la naturaleza.

No debemos subestimar la importancia de estas ideas, pues  la mayoría de los eruditos en ese momento creía que el conocimiento sólo podía obtenerse de un estudio de las Escrituras

En el siglo XIII algunos estaban dispuestos a considerar siquiera la posibilidad de la investigación científica, y la mayoría consideraba que todo conocimiento viene de Dios a través de los antiguas escrituras divinamente inspiradas. No sólo Alberto aboga por lo que hoy llamaríamos el método científico en el estudio del mundo real,lo hizo de tal manera que sus ideas fueron aceptadas por la Iglesia. 

Distinguió y exigió delimitar los ámbitos de la fe y de la razón, se dedicó a estudios experimentales y fue un gran investigador (sobre todo en química, campo en el que se le deben descubrimientos). Conocido como Doctor universalis, es doctor de la Iglesia y fue canonizado en 1931. Fiesta el 15 de noviembre 

Kepler

El astrónomo, matemático y físico alemán Johannes Kepler fue hijo de un mercenario –que sirvió por dinero en las huestes del duque de Alba y desapareció en el exilio en 1589– y de una madre sospechosa de practicar la brujería, Johannes Kepler superó las secuelas de una infancia desgraciada y sórdida merced a su tenacidad e inteligencia.

Tras estudiar en los seminarios de Adelberg y Maulbronn, Kepler ingresó en la Universidad de Tubinga (1588), donde cursó los estudios de teología y fue también discípulo del copernicano Michael Mästlin. En 1594, sin embargo, interrumpió su carrera teológica al aceptar una plaza como profesor de matemáticas en el seminario protestante de Graz.

Cuatro años más tarde, unos meses después de contraer un matrimonio de conveniencia, el edicto del archiduque Fernando contra los maestros protestantes le obligó a abandonar Austria y en 1600 se trasladó a Praga invitado por Tycho Brahe. Cuando éste murió repentinamente al año siguiente, Kepler lo sustituyó como matemático imperial de Rodolfo II, con el encargo de acabar las tablas astronómicas iniciadas por Brahe y en calidad de consejero astrológico, función a la que recurrió con frecuencia para ganarse la vida.

En 1611 fallecieron su esposa y uno de sus tres hijos; poco tiempo después, tras el óbito del emperador y la subida al trono de su hermano Matías, fue nombrado profesor de matemáticas en Linz. Allí residió Kepler hasta que, en 1626, las dificultades económicas y el clima de inestabilidad originado por la guerra de los Treinta Años lo llevaron a Ulm, donde supervisó la impresión de las Tablas rudolfinas, iniciadas por Brahe y completadas en 1624 por él mismo utilizando las leyes relativas a los movimientos planetarios que aquél estableció.

En 1628 pasó al servicio de A. von Wallenstein, en Sagan (Silesia), quien le prometió, en vano, resarcirle de la deuda contraída con él por la Corona a lo largo de los años. Un mes antes de morir, víctima de la fiebre, Kepler había abandonado Silesia en busca de un nuevo empleo.

La primera etapa en la obra de Kepler, desarrollada durante sus años en Graz, se centró en los problemas relacionados con las órbitas planetarias, así como en las velocidades variables con que los planetas las recorren, para lo que partió de la concepción pitagórica según la cual el mundo se rige en base a una armonía preestablecida. Tras intentar una solución aritmética de la cuestión, creyó encontrar una respuesta geométrica relacionando los intervalos entre las órbitas de los seis planetas entonces conocidos con los cinco sólidos regulares. Juzgó haber resuelto así un «misterio cosmográfico» que expuso en su primera obra, Mysterium cosmographicum (El misterio cosmográfico, 1596), de la que envió un ejemplar a Brahe y otro a Galileo, con el cual mantuvo una esporádica relación epistolar y a quien se unió en la defensa de la causa copernicana.

Durante el tiempo que permaneció en Praga, Kepler realizó una notable labor en el campo de la óptica: enunció una primera aproximación satisfactoria de la ley de la refracción, distinguió por vez primera claramente entre los problemas físicos de la visión y sus aspectos fisiológicos, y analizó el aspecto geométrico de diversos sistemas ópticos.

Pero el trabajo más importante de Kepler fue la revisión de los esquemas cosmológicos conocidos a partir de la gran cantidad de observaciones acumuladas por Brahe (en especial, las relativas a Marte), labor que desembocó en la publicación, en 1609, de la Astronomia nova (Nueva astronomía), la obra que contenía las dos primeras leyes llamadas de Kepler, relativas a la elipticidad de las órbitas y a la igualdad de las áreas barridas, en tiempos iguales, por los radios vectores que unen los planetas con el Sol.

Culminó su obra durante su estancia en Linz, en donde enunció la tercera de sus leyes, que relaciona numéricamente los períodos de revolución de los planetas con sus distancias medias al Sol; la publicó en 1619 en Harmonices mundi (Sobre la armonía del mundo), como una más de las armonías de la naturaleza, cuyo secreto creyó haber conseguido desvelar merced a una peculiar síntesis entre la astronomía, la música y la geometría.

Compartir este post

Repost 0
Published by Antonio Rosales Góngora. - en Matemáticos del día
Comenta este artículo

Comentarios

Artículos Recientes

  • Matemáticos del día
    No es cierto que todo sea incierto B.Pascal Matemáticos que han nacido o fallecido el día 19 de Agosto Matemáticos nacidos este día: 1584 : Vernier1646 : Flamsteed1736 : Bring1739 : Klügel1924 : Aubert1939 : Alan Baker Matemáticos fallecidos este día:...
  • Matemáticos del día
    Nada procede del azar, sino de la razón y la necesidad Leucipo Matemáticos que han nacido o fallecido el día 18 de Agosto Matemáticos nacidos este día: 1685 : Taylor1832 : Rouché1861 : Greenstreet1910 : Turán1936 : Kovacs1941 : Domokos Szász Matemáticos...
  • Matemáticos del día
    Y quizá la posteridad me agradecerá el haber demostrado que los antiguos no lo sabían todo P.Fermat Matemáticos que han nacido o fallecido el día 17 de Agosto Matemáticos nacidos este día: 1601 : Fermat1904 : Giovanni Ricci1904 : Levitzki1954 : Daubechies...
  • Matemáticos del día
    Reconozco al león por sus garras J. Bernouilli Matemáticos que han nacido o fallecido el día 16 de Agosto Matemáticos nacidos este día: 1744 : Mechain1773 : Francoeur1821 : Cayley1837 : Tilly1842 : Rosanes1852 : Graf1870 : Frank Jackson1888 : Rey Pastor1905...
  • Matemáticos del día
    Dos concepciones aparentemente incompatibles pueden cada una representar un aspecto de la verdad L.Broblie Matemáticos que han nacido o fallecido el día 15 de Agosto Matemáticos nacidos este día: 1795 : Léger1863 : Aleksei Krylov1882 : Chazy1886 : Lockhart1892...
  • Matemáticos del día
    La mejor revisión de la aritmética consiste en el estudio del álgebra F.Cajori Matemáticos que han nacido o fallecido el día 14 de Agosto Matemáticos nacidos este día: 1530 : Benedetti1737 : Hutton1842 : Darboux1850 : Ball1865 : Castelnuovo1866 : Vallée...
  • Matemáticos del día
    Está claro que la economía, si es que va a ser una ciencia,debe ser una ciencia matemática W.S.Jevons Matemáticos que han nacido o fallecido el día 13 de Agosto Matemáticos nacidos este día: 1625 : Bartholin 1704 : Fontaine des Bertins1819 : Stokes1861...
  • Matemáticos del día
    Si uno no puede explicar lo que ha estado haciendo, su trabajo carecerá de valor E.Schrödinger Matemáticos que han nacido o fallecido el día 12 de Agosto Matemáticos nacidos este día: 1769 : Bartels1862 : Jules Richard1887 : Schrödinger 1930 : Tits Matemáticos...